Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Munksgaard International Publishers
    Scandinavian journal of medicine & science in sports 13 (2003), S. 0 
    ISSN: 1600-0838
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine , Sports Science
    Notes: The aim of the present study was to evaluate whether the Epo isoforms in blood, induced by short-term and intermittent hypoxia, are different from those at normoxia at sea level and if this could be an impediment to the use of a direct Epo doping test based upon the electric charge of the Epo isoforms. Ten healthy subjects, 9 men and 1 woman, participated in the study. Median age was 22 years (range 20–32). Normobaric hypoxia was administered differently in 3 sub-groups; two groups with 12 h hypoxia and 12 h normoxia up to 10 days: IM 2000 and IM 2700 living in 16.2% and 14.9% O2, corresponding to 2000 and 2700 m above sea level, respectively, and training in normoxia. The third group, C 2700, lived in hypoxia, 14.9% O2 corresponding to 2700 m, continuously for 48 h. The mean serum Epo level increased from 10.9 IUL−1 (range 8.8–12.5) to 23.5 IUL−1 (15.6–29.1) after 2 days followed by 19.7 IUL−1 (16.1–24.1) after 10 days exposure for intermittent hypoxia. The highest values 39.5 IUL−1 (31.5–50) were obtained for the group exposed for continuous hypoxia for 48 h. The median electrophoretic mobility of the serum Epo isoforms was above the cut-off limit of 670 AMU, previously estimated for discrimination between recombinant and endogenous Epo, in all samples taken before and after exposure to hypoxia. The highest values, mean 730 mAMU (range 703–750) were obtained after 10 days of intermittent hypoxia. Conclusion: If the method had been used as a doping test, no false positive results would have been registered for the 15 serum samples from the 10 individuals exposed for hypoxia. Thus, the results indicate that the basic principle for direct detection of recombinant Epo doping, based upon the change in electric charge on Epo, can be used also on individuals having lived in a hypoxic milieu.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Scandinavian journal of medicine & science in sports 8 (1998), S. 0 
    ISSN: 1600-0838
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine , Sports Science
    Notes: Effects on erythropoiesis and blood pressure as well as physical performance and mental effects were studied in 15 healthy subjects during intermittent exposure to normobaric hypoxia corresponding to either 2000 m (6 persons) or 2700 m (9 persons) above sea level; another group (5 persons) also served as controls at normoxia. The concept “live hightrain low” was used for 10 d consecutively and the exposure to hypoxia was 12 h/d. Blood pO2 and oxygen saturation were significantly decreased during the 10 d at hypoxia. [Hb] and Hct decreased significantly after 2 d in hypoxia and then returned to pre-study levels. Erythropoietin was significantly elevated in both hypoxia groups during the initial 3–5 d. Reticulocytes were significantly increased during 7 d of hypoxia. Submaximal and maximal oxygen uptake, blood pressure at rest and during exercise and the profile of mood states (POMS test) did not change during the study. In conclusion, intermittent normobaric hypoxia for 10 d resulted in a significant stimulation of erythropoiesis. Staying at normobaric hypoxia may serve as a complement to an ordinary altitude level sojourn.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...