Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Glycolysis is one of the best and widely conserved general metabolic pathways. Bacillus subtilis enzymes catalysing the central part of glycolysis, gathering the steps of interconversion of the triose phosphates from dihydroxyacetone-phosphate to phosphoenolpyruvate, are encoded by five genes, gapA, pgk, tpi, pgm and eno. They are transcribed in a hexacistronic operon together with cggR, the first cistron, encoding the repressor of this gapA operon. Using deletion analysis, we have localized the CggR operator between the promoter and the first gene of the operon. CggR was purified and used in gel mobility shift assays and DNase I footprinting experiments to delimit its target sequence. Site-directed mutagenesis and in vivo tests demonstrated that it consists of two direct-repeats (CGGGACN6TGTCN4CGGGACN6TG TC). Sequence analysis and transcriptome comparison of a wild-type and a cggR mutant strain strongly suggested that CggR regulates only the gapA operon. The presence of glycolytic carbon sources induces expression of the gapA operon. Genetic experiments allowed us to identify the metabolic steps required for the formation of the CggR effector. In vitro experiments with the suggested candidates allowed us to demonstrate that fructose-1,6-biphosphate (FBP) acts as an inhibitor of CggR DNA-binding activity (10 mM for full inhibition). FBP is thus the major signal for both CcpA-dependent catabolite repression (or activation) and activation of the central glycolytic genes. Genomic sequence comparisons suggest that these results can apply to numerous low-G+C, Gram-positive bacterial species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 55 (2005), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In Bacillus subtilis, the NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (GapB) and the phosphoenolpyruvate carboxykinase (PckA) enzymes are necessary for efficient gluconeogenesis from Krebs cycle intermediates. gapB and pckA transcription is repressed in the presence of glucose but not via CcpA, the major transcriptional regulator for catabolite repression in B. subtilis. A B. subtilis mini-Tn10 transposant library was screened for clones affected in catabolite repression of gapB. Inactivation of a previously unknown gene, yqzB (renamed ccpN for control catabolite protein of gluconeogenic genes), was found to relieve not only gapB but also pckA transcription from catabolite repression. Purified CcpN specifically bound to the gapB and pckA promoters. ccpN is co-transcribed constitutively with another unknown gene, yqfL. A yqfL deletion lowers the level of gapB and pckA transcription threefold under both glycolytic and gluconeogenic conditions and a ccpN deletion is epistatic over a yqfL deletion. YqfL is thus a positive regulator of the expression of gapB and pckA, the effect of which is not influenced by the metabolic regime of the cell but appears to be mediated by CcpN. ccpN has homologues in many Firmicutes, but not all, while yqfL homologues are widely distributed in Eubacteria and also present in some plants. In all analysed bacterial genomes, ccpN and yqfL are physically linked together or to putative gluconeogenic genes. CcpN thus orchestrates a novel CcpA-independent mechanism for catabolite repression of gluconeogenic genes highly conserved in Firmicutes and appears as a functional analogue of FruR in Enterobacteria. The physiological significance of the regulation mediated via the three B. subtilis global transcription regulators, CcpA, CggR and CcpN, is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We present the sequence of a 2 kb fragment of the Bacillus subtilis Marburg genome containing sacB, the structural gene of levansucrase, a secreted enzyme inducible by sucrose. The peptide sequence deduced for the secreted enzyme is very similar to that directly determined by Delfour (1981) for levansucrase of the non-Marburg strain BS5. The peptide sequence is preceded by a 29 amino acid signal peptide. Codon usage in sacB is rather different from that in the sequenced genes of other secreted enzymes in B. subtilis, especially α-amylase. Genetic evidence has shown that the sacB promotor is rather far from the beginning of sacB (200 bp or more). The 200 bp region preceding sacB shows some of the features of an attenuator. A preliminary discussion of the putative workings and roles of this attenuator-like structure is proposed. sacR c mutations, which allow constitutive expression of levansucrase, have been located within the 450 bp upstream of sacB. It is shown that sacR c and sacR + alleles control in cis the expression of the adjacent sacB gene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1617-4623
    Keywords: Bacillus subtilis ; Exoenzyme ; Attenuation ; Tn917
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The regulation of sacB, the gene encoding Bacillus subtilis levansucrase is altered by mutations located in several loci unlinked to sacB. Amongst these, the sacS locus seems to play an important role in the induction of sacB by sucrose. We have cloned sacS and found evidence suggesting that it contains two genes. The product of the first gene might repress the expression of the second; the second gene encodes a positive regulator of levansucrase synthesis, since its deletion abolishes this synthesis. There is a palindromic sequence resembling ϱ-independent terminators between the sacB promoter and the structural gene. Mutations affecting this palindrome make sacB constitutive. This suggests that the putative terminator is involved in the induction of sacB by sucrose. We discuss the possibility that the sacS-encoded positive regulator is a sucrose-dependent antiterminator which modulates transcription termination between the sacB promoter and the structural gene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0887-3585
    Keywords: SacY ; antiterminator ; RNA-binding motif ; crystallization ; x-ray crystallography ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: SacY is the antiterminator protein involved in the induction by sucrose of the expression of the levansucrase gene (sacB) of Bacillus subtilis. In the presence of sucrose, SacY is activated and prevents premature termination of transcription by binding to a RNA-antiterminator (RAT) sequence partially overlapping with the terminator sequence. SacY consists of a RNA-binding N-terminal domain, SacY(1-55), and a regulatory domain, SacY(56-280), sensitive to the sucrose concentration. SacY(1-55) is in itself capable of binding to the RAT sequence and preventing termination independently of the sucrose concentration. In this paper we describe the overexpression, the purification, and the crystallization of SacY(1-55). We obtained six different crystal forms, some of them diffracting to high resolution (〉1.5 Å). Self rotation function calculations indicated the presence of a dimer in the asymmetric unit, which is in agreement with a proposed oligomeric state in solution as observed by high-resolution NMR measurements. The crystallization of some site-directed cysteine mutants opens the way of solving the structure by multiple isomorphous replacement. Proteins 28:590-594, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...