Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of chemical & engineering data 37 (1992), S. 224-228 
    ISSN: 1520-5134
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 52 (1993), S. 94-98 
    ISSN: 1432-0827
    Keywords: Atherosclerosis ; Calcification ; Hydroxyapatite ; Cholesterol ; Filipin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary Cholesterol and calcium phosphate, the latter in the form of hydroxyapatite, accumulate in atherosclerotic lesions. In this report, we demonstrate that these organic and inorganic constitutents of lesions can accumulate together, closely associated in crystal agglomerates. Using the fluorescent cholesterol probe, filipin, we identified unesterified cholesterol that was associated with calcium granules in tissue sections of lesions. We also have shown that small crystallites of cholesterol can associate with preformed hydroxyapatite crystals in vitro. Scanning electron microscopy couple with energy-dispersive X-ray analysis demonstrated the physical association of many small crystallites of cholesterol with larger crystals of hydroxyapatite. These small crystallites of cholesterol associated with hydroxyapatite stained with filipin. This contrasted with the lack of filipin staining of unassociated larger cholesterol crystals or hydroxyapatite alone. How cholesterol and calcium come to be closely associated in crystal agglomerates within atherosclerotic lesions remains to be determined.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-904X
    Keywords: carbamazepine ; hydroxypropylmethylcellulose ; egg albumin ; electron paramagnetic resonance ; nuclear magnetic resonance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. The present study was conducted in order to investigate the correlation between the hydration properties of HPMC and EA matrices, gel microstructure and mobility, crystalline changes occurring in the gel and CBZ release kinetics. The influence of HPMC and EA erosion modes on CBZ release kinetics was interpreted in terms of gel microstructures. Methods. NMR technique was used to determine the T 1 and T 2 relaxation rates of water in hydrated matrices. PFGSE NMR technique was employed to determine the SDC of water in the gels. EPR technique was used to determine the rotational correlation time of PCA in the hydrated matrices, gel microviscosity, mobile compartment, α, β, γ parameters and lorentzian/ gaussian ratio. These parameters are indicative of matrix microstructure. Results. CBZ release mechanism from HPMC and EA matrices was markedly different. This behavior was related to the different structures of the polymer and protein. T 2 relaxation studies and SDC measurements by NMR revealed higher chain hydration for HPMC compared to EA. Using the EPR technique it has been shown that the microviscosity and mobile compartment of matrices containing HPMC are lower than matrices containing EA. The microviscosity, mobile compartment and S-parameter values of hydrated matrices containing different EA/CBZ ratios were in correlation with the crystallization properties of CBZ in the gels, matrix erosion properties and CBZ release kinetics from the matrices. Conclusions. Characterization of matrix structures using EPR and NMR techniques supported our hypothesis concerning the mechanism involved in HPMC-CBZ interaction. EA/CBZ matrix microstructure features, analyzed by NMR and EPR techniques, were in correlation with the crystalline changes occurring in the gel and drug release kinetics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...