Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Chemical data for 139 natural paragonite-muscovite (Pg-Ms) pairs illustrate the effects of ferromagnesian components on the P-T-X topology of the Pg-Ms solvus. The pairs were selected on the basis of: reasonably accurate knowledge of the P-T conditions of formation; evidence for close approach to equilibrium at peak metamorphic conditions; exclusion of pairs in which paragonite contains more than 5 mol% margarite; and exclusion of pairs from polymetamorphic rocks that contain more than one set of cogenetic Pg-Ms pairs. Graphical analysis reveals considerable scatter in the data; nevertheless, it is evident that the muscovite limb of the solvus shifts markedly toward end-member muscovite with increasing pressure from approximately 7 kbar to 21 kbar. This shift is attributed to a pressure-induced increase of the ferromagnesian content of muscovite, which increases the size of the XII alkali site - to the effect that K is more readily accommodated than Na. The data also suggest that the paragonite limb of the solvus migrates slightly toward end-member paragonite with increasing pressure. Broadening of the Pg-Ms solvus with increasing pressure reflects increasingly nonideal Na-K mixing as the phengite content of muscovite increases. Due to the wide scatter of data for Pg-phengitic-Ms pairs, it is concluded that, at the present time, Pg-Ms solvus thermometry is only viable for quasibinary Pg-Ms pairs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 17 (1996), S. 179-190 
    ISSN: 1572-9567
    Keywords: density ; high pressures ; high teperaturm syringe pumps ; vibrating U-tube
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A vibrating U-tube apparatus has been developed for determining the densities of pure fluids and fluid mixtures at 10-200 MPa and 323-773 K. Measured parameters areP,T, andr (period of vibration). Fluids are injected into the U-tube at constantP andT. Three or more reference fluids are used to calibrate the response of the instrument. Fluid mixtures are produced by pumping pure fluids into T-junctions on the upstream side of the U-tube using high accuracy syringe pumps. An automated syringe pump is used to maintainP at setpoint ±0.01 MPa.T is controlled to ±0.01 K using a closed-loop, electronic signal amplification/feedback system. For mixtures, a statistically significant number of measurements of r are obtained to account for the effects of small heterogeneities in fluid composition (generally 〈0.005X;). Typically, density data for 15 fluids can be obtained in a 6- to 8-h period. Considering all of the potential sources of error in the experimentation, conservative estimates of uncertainty are as follows:P, ±0.02 MPa;T, ±0.05 K;p (pure fluids), ±0.0005g.cm−3; andp (fluid mixtures), ±0.0005-0.0010g-cm−3.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 17 (1996), S. 621-630 
    ISSN: 1572-9567
    Keywords: activity-composition relations ; aqueous fluid mixtures ; hydrogen fugacity sensor ; H2O fugacity buffer ; oxygen fugacity sensor ; high pressures ; high temperatures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Several chemical techniques have recently been developed for measuring and controlling the fugacitiesf O 2,f H 2,f H 2 O, andf HCl in supercritical aqueous fluids. Experimental samples consisting of fluid components and solid chemical “sensors” or “buffers” are sealed in H2-permeable noble metal (Pt or Ag Pd alloy) capsules and reacted at high pressure and temperature, Hydrogen diffusion through the walls of the capsule(s) allowsf H 2 to be controlled or measured. After quenching, the fluids and solids are analyzed to quantify one or more thermodynamic properties of interest. Methods for determining the activity Composition relations of H2O in aqueous fluid mixtures are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...