Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 690-699 
    ISSN: 0006-3592
    Keywords: cofactor responses ; dual limitation ; nicotinamide adenine dinucleotide ; phosphorylation potential ; metabolic control ; Pseudomonas putida ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The highly systematic responses of cellular cofactors to controlled substrate limitations of electron donor, electron acceptor, and both (dual limitation) were quantified using continuous-flow cultures of Pseudomonas putida. The results showed that the NADH concentration in the cells decreased gradually as the specific rate of electron-donor utilization (-qd) fell or increased systematically as oxygen limitation became more severe for fixed -qd, while the NAD concentration was invariant. The NAD(H) responses demonstrated a common strategy; compensation for a low concentration of an externally supplied substrate by increasing (or decreasing) the concentration of its internal cosubstrate (or coproduct). The compensation was dramatic, as the NAD/NADH ratio showed a 24-fold modulation in response to depletion of dissolved oxygen (DO) or acetate. In the dual-limitation region, the compensating effects toward depletion of one substrate were damped, because the other substrate was simultaneously at low concentration. However, the NAD(H) responses minimized the adverse impact from substrate depletion on overall cell metabolism. Cellular contents of ATP, ADP, and Pi were mostly affected by -qd, such that the phosphorylation potential, ATP/ADP · Pi, increased as -qd fell due to depletion of acetate, DO, or both. Since the respiration rate should be slowed by high ATP/ADP · Pi, the cellular response seems to amplify an unfavorable environmental condition when oxygen is depleted. The likely reason for this apparent disadvantageous response is that the response of phosphorylation potential is more keenly associated with other aspects of metabolic control, such as for synthesis, which requires Pi for production of phospholipids and nucleotides. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 683-689 
    ISSN: 0006-3592
    Keywords: dual limitation ; cofactor responses ; kinetics ; multiplicative model ; structured model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A structured model of substrate-utilization kinetics that encompasses dual-limitation conditions, caused by simultaneously low concentrations of the electron donor and the electron acceptor, is developed by incorporating the internal cofactor responses into the kinetic variables. The structured model is based on an assumption that the maximum specific electron-donor-oxidation rate (qmd) is not a constant, but is linearly controlled by the intracellular chemical potentials, log(NAD/NADH) and log(ATP/ADP · Pi). Determination of the kinetic parameters for the dual-limitation model, using experimental data from the companion article, verifies that qmd varies and demonstrates that the NAD/NADH ratio affects qmd in a positive direction; thus, an increase of the ratio increases the rate of electron-donor utilization. Because the internal NAD/NADH ratio rises with an increase in Sar the specific electron-donor-utilization rate is accelerated by high Sa. Since the ratio also increases as the specific electron-donor-utilization rate falls, the specific rate is intrinsically accelerated by the cofactor response when it becomes low due to a depletion of electron donor. Because the cofactor responses upon changes of the external substrate concentrations are systematic, the dual-limitation model can be expressed as a function of only external concentrations of electron donor and electron acceptor, which results in a multiplicative (double-Monod) form. Thus, dual limitation by both substrates reduces the overall reaction rate below the rate expected from single limitation by only one, the most severely limiting, substrate. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...