Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bradford : Emerald
    Engineering computations 18 (2001), S. 170-192 
    ISSN: 0264-4401
    Source: Emerald Fulltext Archive Database 1994-2005
    Topics: Technology
    Notes: Computational efficiency and reliability are clearly the most important requirements for the success of a meshless numerical technique. While the basic ideas of meshless techniques are simple and well understood, an effective meshless method is very difficult to develop. The efficiency depends on the proper choice of the interpolation scheme, numerical integration procedures and techniques of imposing the boundary conditions. These issues in the context of the method of finite spheres are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 15 (1980), S. 1771-1812 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: An assessment of flat triangular plate bending elements with displacement degrees-of-freedom at the three corner nodes only is presented, with the purpose of identifying the most effective for thin plate analysis. Based on a review of currently available elements, specific attention is given to the theoretical and numerical evaluation of three triangular 9 degrees-of-freedom elements; namely, a discrete Kirchhoff theory (DKT) element, a hybrid stress model (HSM) element and a selective reduced integration (SRI) element. New and efficient formulations of these elements are discussed in detail and the results of several example analyses are given. It is concluded that the most efficient and reliable three-node plate bending elements are the DKT and HSM elements.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 14 (1979), S. 961-986 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: An updated Lagrangian and a total Lagrangian formulation of a three-dimensional beam element are presented for large displacement and large rotation analysis. It is shown that the two formulations yield identical element stiffness matrices and nodal point force vectors, and that the updated Lagragian formulation is computationally more effective. This formulation has been implemented and the resulted of some sample analyses are given.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 18 (1982), S. 1565-1568 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The use of warping displacement functions for the torsional stiffness representation of beams with rectangular cross-sections is studied. These functions can directly be employed in the displacement-based formulation of Hermitian and isoparametric three-dimensional beam elements for linear, elastic-plastic or large displacement/large rotation analysis. the results of some studies are given to demonstrate the applicability and use of the proposed functions.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 15 (1980), S. 943-948 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 21 (1985), S. 367-383 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: This communication discusses a 4-node plate bending element for linear elastic analysis which is obtained, as a special case, from a general nonlinear continuum mechanics based 4-node shell element formulation. The formulation of the plate element is presented and the results of various example solutions are given that yield insight into the predictive capability of the plate (and shell) element.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 6 (1973), S. 213-226 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A survey of probably the most efficient solution methods currently in use for the problems Kφ = ω2Mφ and KΨ = λKGΨ is presented. In the eigenvalue problems the stiffness matrices K and KG and the mass matrix M can be full or banded; the mass matrix can be diagonal with zero diagonal elements. The choice is between the well-known QR method, a generalized Jacobi iteration, a new determinant search technique and an automated sub-space iteration. The system size, the bandwidth and the number of required eigenvalues and eigenvectors determine which method should be used on a particular problem. The numerical advantages of each solution technique, operation counts and storage requirements are given to establish guidelines for the selection of the appropriate algorithm. A large number of typical solution times are presented.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 9 (1975), S. 353-386 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Starting from continuum mechanics principles, finite element incremental formulations for non-linear static and dynamic analysis are reviewed and derived. The aim in this paper is a consistent summary, comparison, and evaluation of the formulations which have been implemented in the search for the most effective procedure. The general formulations include large displacements, large strains and material non-linearities. For specific static and dynamic analyses in this paper, elastic, hyperelastic (rubber-like) and hypoelastic elastic-plastic materials are considered. The numerical solution of the continuum mechanics equations is achieved using isoparametric finite element discretization. The specific matrices which need be calculated in the formulations are presented and discussed. To demonstrate the applicability and the important differences in the formulations, the solution of static and dynamic problems involving large displacements and large strains are presented.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: We briefly discuss the requirements on general shell elements for linear and nonlinear analysis in practical engineering environments, and present our approach to meet these needs. We summarize and give further insight into our formulation of a 4-node shell element using a mixed interpolation of tensorial components, and present a new 8-node element using this approach. Specific attention is given to the general applicability of the elements and their efficient use in practice.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 24 (1987), S. 1509-1532 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: An algorithm for stable and accurate computations of stresses in finite element thermo-elastic-plastic and creep analysis of metals is presented. The effective-stress-function algorithm solves the governing equations of the inelastic constitutive behaviour by calculating the zero of the appropriate effective-stress-function: a functional relationship which involves as unknown only the effective stress. The derivation of the effective-stress-function for thermo-elasto-plasticity conditions, including creep, for 2-D and 3-D analysis is presented, and the algorithmic steps of the stress solution are discussed. For use in the stiffness matrix a tangent material stress-strain relationship is evaluated consistent with the effective-stress-function algorithm. The solution of some demonstrative problems shows the effectiveness of the solution procedure.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...