Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The UDP-sugar hydrolase of Salmonella typhimurium has previously been reported to be located in both the inner and the outer membrane. We have cloned the gene, designated ushB, encoding this enzyme and determined its nucleotide sequence. No significant sequence homology with the periplasmic UDP-sugar hydrolase of Escherichia coli was found at either the DNA or protein level. However, a sequence is detectable, in the E. coli genome, which weakly hybridizes with a specific ushB probe. Polypeptide analysis has allowed the identification of the Salmonella hydrolase which has an Mr of 28349 as compared to an Mr of 60767 for the E. coli hydrolase. Most of the protein (∼90%) is located in the inner membrane. Two independent membrane fractionation procedures indicate that the remainder may be associated with the outer membrane. The deduced primary structure indicates the presence of an N-terminal signal peptide, although certain features of the region surrounding the putative processing site indicate that processing may be inefficient, or may not occur. Experiments with several inhibitors of signal peptidase function fail to demonstrate the appearance of a precursor form.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 110 (1971), S. 289-298 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Thymine requiring strains of Escherichia coli are known to possess a significant pool of deoxyribose-1-phosphate in contrast to non-mutant strains. In this paper thymine-requiring mutants lacking thymidine phosphorylase, purine nucleoside phosphorylase, and uridine phosphorylase, in various combinations, are used to show that deoxyribose-1-phosphate is a degradation product of pyrimidine deoxynucleosides and that both thymidine phosphorylase and uridine phosphorylase participate in this degradation. Our results confirm an earlier report by Krenitsky, Barclay and Jacquez that uridine phosphorylase has some specificity for deoxyuridine. We also show that this enzyme can degrade bromodeoxyuridine. The data presented here support the hypothesis that breakdown of deoxynucleosides to deoxyribose-1-phosphate is due to an accumulation of the deoxynucleotide precursors of thymidine triphosphate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 102 (1968), S. 112-127 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Thymineless mutants ofSalmonella typhimurium which are able to grow with low added concentrations of thymine (20 μM) fall into two classes on the basis of growth on deoxyribose as sole carbon source. Those which can grow are deoxyribomutase negative and those which cannot are deoxyriboaldolase negative. The former class are inhibited by deoxynucleosides and this provides a method for discriminating between different classes oftlr mutants ofEscherichia coli K12, which cannot utilize deoxyribose as a carbon source. It is suggested that the sensitivity of deoxyriboaldolase negative strains is due to the accumulation of deoxyribose-5-phosphate. The data also indicate that deoxyribose-5-phosphate is the inducer of thymidine phosphorylase. It seems that one or both of the deoxyribose phosphates is the toxic compound, and that reversal of inhibition by ribonucleosides is due to inhibition of the enzymes catalysing their formation from deoxynucleosides. We propose that the symbolsdrm anddra be used to denote the structural genes for deoxyribomutase and deoxyriboaldolase respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 154 (1977), S. 67-73 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Previous studies by others have indicated that the synthesis of secreted enzymes is unusually sensitive to many translation inhibitors and resistant, for about 30 min, to rifampicin. We have studied the sensitivity of secreted (periplasmic) phosphatases to such inhibitors. Alkaline phosphatase synthesis is more sensitive than total protein synthesis to tetracyclin and spectinomycin, but not to sparsomycin, streptomycin, chloramphenicol, kasugamycin, blasticidin S or thiostrepton; it is slightly more resistant than total protein synthesis to the latter two antibiotics. Acid hexose-phosphatase was also preferentially sensitive to tetracyclin and spectinomycin and also to kasugamycin. β-galactosidase was also included in the study, as an intracellular enzyme, and was found to be preferentially inhibited (“repressed”), sometimes transiently, by all eight translation inhibitors. This effect did not seem to be mediatedthrough cyclic AMP or guanosine tetraphosphate; the “repression” was still evident in mutants with altered rho factor indicating that it may also not be related to artificial polarity. synthesis of both periplasmic phosphatases was immediately inhibited by rifampicin. These results differ from those found in previous studies with other organisms and suggest a reappraisal of the usual interpretation of these phenomena.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-2665
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The change in genomic DNA responsible for HPRT deficiency has been determined in a patient with urate overproduction and gout. In erythrocyte cell lysates, this patient had approximately 10% of normal HPRT enzyme activity and 26% of immunoidentical HPRT protein. Cultured lymphoblasts derived from this patient were used to extract mRNA. This was reverse transcribed to cDNA, which was then amplified using the polymerase chain reaction. The resulting DNA was cloned and the nucleotide sequence determined. In addition a portion of the sequence was derived from cloned double-stranded cDNA prepared by conventional first and second strand synthesis. A single nucleotide base change (a C → T transition) was detected, which predicts an amino acid substitution of isoleucine for threonine at amino acid 168 of the HPRT protein. The nucleotide substitution creates aBamHI site, confirming a restriction fragment length polymorphism previously reported in this patient.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...