Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1617-4623
    Keywords: Ds1 excision ; Maize Streak Virus ; Zea mays plants ; Agroinfection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A reverse genetic system for studying excision of the transposable elementDs1 in maize plants has been established previously. In this system, theDs1 element, as part of the genome of maize streak virus (MSV), is introduced into maize plants via agroinfection. In the presence of theAc element, excision ofDs1 from the MSV genome results in the appearance of viral symptoms on the maize plants. Here, we used this system to study DNA sequences requiredin cis for excision ofDs1. TheDs1 element contains theAc transposase binding motif AAACGG in only one of its subterminal regions (defined here as the 5′ subterminal region). We showed that mutation of these motifs abolished completely the excision capacity ofDs1. This is the first direct demonstration that the transposase binding motifs are essential for excision. Mutagenesis with oligonucleotide insertions in the other (3′) subterminal region resulted in elements with either a reduced or an increased excision efficiency, indicating that this subterminal region also has an important function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Key words Ac Transposable element ; Zea mays ; DNA binding domain ; Gel retardation assay
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The mobility of maize transposable element Activator (Ac) is dependent on the 11-bp terminal inverted repeats (IRs) and approximately 250 subterminal nucleotides at each end. These sequences flank the coding region for the transposase (TPase) protein, which is required for the transposition reaction. Here we show that Ac TPase has a bipartite DNA binding domain, and recognizes the IRs and subterminal sequences in the Ac ends. TPase binds cooperatively to repetitive ACG and TCG sequences, of which 25 copies are found in the 5′ and 20 copies in the 3′ subterminal regions. TPase affinity is highest when these sites are flanked on the 3′ side by an additional G residue (A/TCGG), which is found at 75% of binding sites. Moreover, TPase binds specifically to the Ac IRs, albeit with much lower affinity. Two mutations within the IRs that immobilize Ac abolish TPase binding completely. The basic DNA binding domain of TPase is split into two subdomains. Binding to the subterminal motifs is accomplished by the C-terminal subdomain alone, whereas recognition of the IRs requires the N-terminal subdomain in addition. Furthermore, TPase is extremely flexible in DNA binding. Two direct or inverted binding sites are bound equally well, and sites that are five to twelve bases apart are similarly well bound. The consequences of these findings for the Ac transposition reaction are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 251 (1996), S. 428-435 
    ISSN: 1617-4623
    Keywords: Key words Transposable element ; Ac ; Zea mays ; Host factor ; DNase I protection assay
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Genetic data suggest that transposition of the maize element Activator (Ac) is modulated by host factors. Using gel retardation and DNase I protection assays we identified maize proteins which bind to seven subterminal sites in both ends of Ac. Four DNase I-protected sites contain a GGTAAA sequence, the other three include either GATAAA or GTTAAA. The specificity of the maize protein binding to Ac was verified by using a synthetic fragment containing four GGTAAA motifs as probe and competitor in gel retardation assays. All seven binding sites are located within regions required in cis for transposition. A maize protein binding site with the same sequence has previously been identified in the terminal inverted repeats of the maize Mutator element. Thus, the protein, that recognizes this sequence is a good candidate for a regulatory host factor for Ac transposition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...