Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1420-908X
    Keywords: Key words: Cyclooxygenase — Prostaglandin G/H synthase — Spinal cord — Inflammation — RT-PCR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Objective and Design: Spinal regulation of cyclooxygenase (COX) isoforms was investigated in the animal model of peripheral inflammation induced by injection of complete Freund's-type adjuvant (CFA) in the rat hindpaw.¶Subjects and Treatment: Peripheral inflammation was induced by intraplantar injection of CFA in one hind footpad of male Sprague Dawley rats (n = 3 per time point).¶Methods: Spinal cord was removed after different times (3 h to 22 d). mRNA and protein were isolated and analyzed by comparative reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively.¶Results: Under the acute inflammatory stimulus 6 h after CFA application, RT-PCR revealed a twofold increase in COX-2 mRNA that reached baseline again at day 3. This transient increase occurred in the lumbar spinal cord, but changes in COX-2 mRNA expression were also registered in RNA preparations from cervical sections, spinal COX-2 induction thus not being a spatially confirmed phenomenon. Western blot analysis of spinal membrane preparations reflected the transient COX-2 mRNA induction at protein levels. During the chronic phase of arthritis at day 22, COX-2 levels were again raised significantly (1.6 fold) over baseline. Spinal levels of COX-1 were not altered at any time point of the peripheral inflammation.¶Conclusion: These data imply a regulatory role for COX-2 but not COX-1 in the spinal modulation under acute and chronic peripheral inflammation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Key words Phosphoribosylpyrophosphate synthetase  ;  Gene family  ;  Nucleotide metabolism  ;  Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In Saccharomyces cerevisiae the metabolite phosphoribosyl-pyrophosphate (PRPP) is required for purine, pyrimidine, tryptophan and histidine biosynthesis. Enzymes that can synthesize PRPP can be encoded by at least four genes. We have studied 5-phospho-ribosyl-1(α)-pyrophosphate synthetases (PRS) genetically and biochemically. Each of the four genes, all of which are transcribed, has been disrupted in haploid yeast strains of each mating type and although all disruptants are able to grow on complete medium, differences in growth rate and enzyme activity suggest that disruption of PRS1 or PRS3 has a significant effect on cell metabolism, whereas disruption of PRS2 or PRS4 has little measurable effect. Using Western blot analysis with antisera raised against peptides derived from the non-homology region (NHR) and the N-terminal half of the PRS1 gene product it has been shown that the NHR is not removed by protein splicing. However, the fact that disruption of this gene causes the most dramatic decrease in cell growth rate and enzyme activity suggests that Prs1p may have a key structural or regulatory role in the production of PRPP in the cell.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...