Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 89 (1985), S. 1155-1156 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 85 (1981), S. 160-165 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 83 (1979), S. 2321-2327 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 88 (1984), S. 1334-1338 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 92 (1988), S. 3818-3820 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 90 (1986), S. 1184-1186 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 2791-2796 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The microhardness, H, and Young's modulus, E, of a polycrystalline diamond film and several amorphous diamondlike carbon (DLC) films were determined from force-displacement curves obtained using an ultralow-load microhardness instrument (UMIS-2000). Measurements were made at a constant loading rate of 3 mN/s, to a maximum applied force of 67 and 100 mN with contact force of 0.06 and 1.07 mN, respectively. The diamond film had a surface morphology typical of microwave plasma chemical vapor deposition films (crystallite size 0.5–3 μm), and the force-displacement curves showed nearly complete elastic behavior. The average values of hardness (80–100 GPa) and modulus (500–533 GPa) are comparable to those of natural (001) diamond reference standards (H=56–102 GPa, E=1050 GPa). The DLC films were prepared by low-energy ion-assisted unbalanced magnetron sputtering. By varying the bombarding ion energy, five films were prepared having different sp3/sp2 bonding ratios (3–6), optical gaps (1.2–1.6 eV), and hydrogen concentrations (4–20 at %). The force-displacement measurements are characterized by substantial elastic recovery, and individual films show a very narrow range of hardness and modulus values. It is found that high hardness and improved modulus in DLC films correlate with increasing ion energy, sp3/sp2 bonding ratio, and energy gap. Individual films have mean values of hardness and elastic modulus in the range 12–30 GPa and 62–213 GPa, respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 6211-6213 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Thermal diffusion factors, αT, are reported for the systems He–nC3H8, He–C4F8, and CH4–C4F8 at 300 K as functions of concentration and pressure; excess second virial coefficients are also reported for each system. The αT values are extrapolated to zero pressure and the theory of Oost, Los, Cauwenbergh, and van Dael is used to predict the pressure dependence of αT at each concentration for comparison with the experimental results. The data for CH4–C4F8 do not agree with the theory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Oppositely concave microfolds (OCMs) in and adjacent to porphyroblasts can be classified into five nongenetic types. Type 1 OCMs are found in sections through porphyroblasts with spiral-shaped inclusion trails cut parallel to the spiral axes, and commonly show closed foliation loops. Type 2 OCMs, commonly referred to as ‘millipede’ microstructure, are highly symmetrical, the foliation folded into OCMs being approximately perpendicular to the overprinting foliation. Type 3 OCMs are similar to Type 2, but are asymmetrical, the foliation folded into OCMs being variably oblique to the overprinting foliation. Type 4 OCMs are highly asymmetrical, only one foliation is present, and this foliation is parallel to the local shear plane. Type 5 OCMs result from porphyroblast growth over a microfold interference pattern.Types 1 and 2 are commonly interpreted as indicating highly noncoaxial and highly coaxial bulk deformation paths, respectively, during porphyroblast growth. However, theoretically they can form by any deformation path intermediate between bulk coaxial shortening and bulk simple shearing. Given particular initial foliation orientation and timing of porphyroblast growth, Type 3 OCMs can also form during these intermediate deformation paths, and are commonly found in the same rocks as Type 2 OCMs. Type 4 OCMs may indicate highly noncoaxial deformation during porphyroblast growth, but may be difficult to distinguish from Type 3 OCMs. Thus, Types 1–3 (and possibly 4) reflect the finite strain state, giving no information about the rotational component of the deformation(s) responsible for their formation. Furthermore, there is a lack of unequivocal independent evidence for the degree of noncoaxiality of deformation (s) during the growth of porphyroblasts containing OCMs. Type 2 OCMs that occur independently of porphyroblasts or other rigid objects might indicate highly coaxial bulk shortening, but there is a lack of supporting physical or computer modelling.It is possible that microstructures in the matrix around OCMs formed during highly noncoaxial and highly coaxial deformation histories might have specific characteristics that allow them to be distinguished from one another. However, determining degrees of noncoaxiality from rock fabrics is a major, longstanding problem in structural geology.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 20 (2002), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Three periods of mineral growth and three generations of spiral-shaped inclusion trails have been distinguished within folded rocks of the Qinling-Dabie Orogen, China, using the development of three successive and differently trending sets of foliation intersection axes preserved in porphyroblasts (FIAs). This progression is revealed by the consistent relative sequence of changes in FIA trends from the core to rim of garnet porphyroblasts in samples with multiple FIAs. The first and second formed sets of FIAs trend oblique to the axial planes of macroscopic folds that dominate the outcrop pattern in this region. The porphyroblasts containing these FIAs grew prior to the development of the macroscopic folds, yet the FIAs do not change orientation across the fold hinges. The youngest formed FIAs (set 3) lie subparallel to the axial planes of these folds and the porphyroblasts containing these FIAs formed in part as the folds developed. The deformation associated with all three generations of spiral-shaped inclusion trails in garnet porphyroblasts involved the formation of subhorizontal and subvertical foliations against porphyroblast rims accompanied by periods of garnet growth; pervasive structures have not necessarily formed in the matrix away from the porphyroblasts. The macroscopic folds are heterogeneously strained from limb to limb, doubly plunging and have moderately dipping axial planes. The consistent orientation of Set 1 FIAs indicates that the development of spiral-shaped inclusion trails in porphyroblasts with FIAs belonging to Set 2 did not involve rotation of the previously formed porphyroblasts. The consistent orientation of Sets 1 and 2 FIAs indicate that the development of spiral-shaped inclusion trails in porphyroblasts with FIAs belonging to Set 3 did not involve rotation of the previously formed porphyroblasts during folding. This requires a fold mechanism of progressive bulk inhomogeneous shortening and demonstrates that spiral-shaped inclusion trails can form outside of shear zones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...