Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 153 (1997), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Yeast cells lacking UDP-Glc pyrophosphorylase (UGPase) encoded by UGP1 are not viable. Two strategies were developed to drastically reduce the intracellular concentration of UDP-Glc in order to study the consequences of this metabolic engineering on physiology and morphology. Firstly, UGP1 was placed under the strongly regulatable THI4 promoter. This resulted in a 95% reduction of UGPase activity in the presence of thiamine. The phenotypic effects of this reduction were slightly stronger than those of glucose on the GAL10/CYC1-UGP1 gene fusion [Daran et al. (1995) Eur. J. Biochem. 230, 520–530]. A further reduction of flux towards UDP-Glc was achieved by deletion of the two phosphoglucomutase genes in the ugp1 conditional strain. The growth of this new mutant strain was hardly affected, while it was extremely sensitive to cell wall interfering drugs. Surprisingly, UDP-Glc levels were reduced only by 5-fold, causing a proportional decrease in both glycogen and β-glucans. Taken altogether, these results indicate that a few percent of enzymatic activities leading to the formation of UDP-Glc appears sufficient to provide the UDP-Glc demands required for cell viability, and that the loss of function of UGP1 is lethal mainly because of the inability of yeast cells to properly form the cell wall.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In the yeast Saccharomyces cerevisíae, trehalose-6-phosphate (tre-6-P) synthase encoded by GGS1/TPS1, is not only involved in the production of trehalose but also in restriction of sugar influx into glycolysis in an unknown fashion; it is therefore essential for growth on glucose or fructose. In this work, we have deleted the TPS2 gene encoding tre-6-P phosphatase in a strain which displays very low levels of Ggs1/Tps1, as a result of the presence of the byp1-3 allele of GGS1/TPS1. The byp1-3 tps2Δ double mutant showed elevated tre-6-P levels along with improved growth and ethanol production, although the estimated concentrations of glycolytic metabolites indicated excessive sugar influx. In the wild-type strain, the addition of glucose caused a rapid transient increase of tre-6-P. In tps2Δ mutant cells, which showed a high tre-6-P level before glucose addition, sugar influx into glycolysis appeared to be diminished. Furthermore, we have confirmed that tre-6-P inhibits the hexokinases in vitro. These data are consistent with restriction of sugar influx into glycolysis through inhibition of the hexokinases by tre-6-P during the switch to fermentative metabolism. During logarithmic growth on glucose the tre-6-P level in wild-type cells was lower than that of the byp1-3 tps2Δ. mutant. However, the latter strain arrested growth and ethanol production on glucose after about four generations. Hence, other mechanisms, which also depend on Ggs1/Tps1, appear to control sugar influx during growth on glucose. In addition, we provide evidence that the requirement for Ggs1/Tps1 for sporulation may be unrelated to its involvement in trehalose metabolism or in the system controlling glycolysis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1432
    Keywords: Key words: Silk proteins — Cysteine-rich modular proteins — Balbiani ring genes — Glycosylation —Synonymous substitutions –Nonsynonymous substitutions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Aquatic larvae of the midge, Chironomus tentans, synthesize a 185-kDa silk protein (sp185) with the cysteine-containing motif Cys-X-Cys-X-Cys (where X is any residue) every 20–28 residues. We report here the cloning and full-length sequence of cDNAs encoding homologous silk proteins from Chironomus pallidivittatus (sp185) and Chironomus thummi (sp220). Deduced amino acid sequences reveal proteins of nearly identical mass composed of 72 blocks of 20–28 residues, 61% of which can be described by the motif X5–8-Cys-X5-(Trp/Phe/Tyr)-X4-Cys-X-Cys-X-Cys. Spatial arrangement of these residues is preserved more than surrounding sequences. cDNA clones enabled us to map the genes on polytene chromosomes and identify for the first time the homolog of the Camptochironomus Balbiani ring 3 locus in Chironomus thummi. The apparent molecular weight difference between these proteins (185 vs 220 kDa) is not attributable to primary structure and may be due to differential N-linked glycosylation. DNA distances and codon substitutions indicate that the C. tentans and C. pallidivittatus genes are more related to each other than either is to C. thummi; however, substitution rates for the 5′- and 3′-halves of these genes are different. Blockwise sequence comparisons suggest intragenic variation in that some regions evolved slower or faster than the mean and may have been subjected to different selective pressures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0983
    Keywords: Yeast ; Trehalose synthase ; GGS1/TPS1 gene ; Isogenic background ; Glucose transport ; Sporulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The GGS1/TPS1 gene of the yeast Saccharomyces cerevisiae encodes the trehalose-6-phosphate synthase subunit of the trehalose synthase complex. Mutants defective in GGS1/TPS1 have been isolated repeatedly and they showed variable pleiotropic phenotypes, in particular with respect to trehalose content, ability to grow on fermentable sugars, glucose-induced signaling and sporulation capacity. We have introduced the fdp1, cif1, byp1 and glc6 alleles and the ggs1/tps1 deletion into three different wild-type strains, M5, SP1 and W303-1A. This set of strains will aid further studies on the molecular basis of the complex pleiotropic phenotypes of ggs1/tps1 mutants. The phenotypes conferred by specific alleles were clearly dependent on the genetic background and also differed for some of the alleles. Our results show that the lethality caused by single gene deletion in one genetic background can become undetectable in another background. The sporulation defect of ggs1/tps1 diploids was neither due to a deficiency in G1 arrest, nor to the inability to accumulate trehalose. Ggs1/tps1 Δ mutants were very sensitive to glucose and fructose, even in the presence of a 100-fold higher galactose concentration. Fifty-percent inhibition occurred at concentrations similar to the Km values of glucose and fructose transport. The inhibitory effect of glucose in the presence of a large excess of galactose argues against an overactive glycolytic flux as the cause of the growth defect. Deletion of genes of the glucose carrier family shifted the 50% growth inhibition to higher sugar concentrations. This finding allows for a novel approach to estimate the relevance of the many putative glucose carrier genes in S. cerevisiae. We also show that the GGS1/TPS1 gene product is not only required for the transition from respirative to fermentative metabolism but continuously during logarithmic growth on glucose, in spite of the absence of trehalose under such conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Chemie Ingenieur Technik - CIT 21 (1949), S. 202-202 
    ISSN: 0009-286X
    Keywords: Chemistry ; Industrial Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...