Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Functional neuro-imaging studies of Parkinson's disease (PD) patients and animal models show inconsistent cortical responses to sensory stimulation: some present increased sensorimotor cortex activation contradicting classical basal ganglia–cortex circuitry models, whereas others show decreased activation. As functional neuro-imaging activation is defined as the signal difference between stimulation ON and stimulation OFF, reduced ‘activation’ can point to either increased neuronal activity during stimulation ON or to decreased basal neuronal activity during stimulation OFF. A unique non-invasive method that uses the temporal and the spatial variances of functional magnetic resonance imaging signal is employed here to compare basal neuronal activity levels and ‘functional homogeneity’ between groups. Based on the assumption that the temporal variance reflects average neuronal activity, the variance of activity within a predefined region is defined as the region's ‘functional homogeneity’, which is assumed to estimate neuronal synchronization. Comparison of temporal and spatial variances of the sensorimotor cortex and the striatum in the 6-hydroxydopamine (6-OHDA) PD rat model and a control rat group show bilaterally decreased temporal and spatial variances in the 6-OHDA rat group, suggesting bilateral reduction of basal neuronal activity levels together with an increase in local neuronal synchronization in line with classical basal ganglia–cortex circuit models.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 15 (2002), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Functional magnetic resonance imaging (fMRI) is used to investigate the basal ganglia (BG)–cortex circuit using a rat model of Parkinson's disease (PD). The model involves a unilateral destruction of the right substantia nigra by intranigral injection of the dopaminergic neurotoxin 6-hydroxydopamine. Volume of cortical activity was measured by the blood oxygenation level-dependent contrast method while applying electrical forepaw stimulation. The main findings are the following. (i) Contrary to the predictions of the classic model but in line with recent experimental results (positron emission tomography, fMRI and electrophysiology), an increased cortical activity in the sensorimotor cortex of PD rats compared with sham-operated or normal rats was found. (ii) A diffuse neuronal activity at large cortical areas that were not related directly to the stimulation used, was observed. (iii) No difference was found between the lesion and the nonlesion hemispheres when the left or the right forepaw was stimulated; both cortices show significant overactivation of the sensorimotor cortices in addition to diffuse cortical activation. The last finding could be explained by either corticocortical connections or by bilateral BG–cortex connections. These finding suggest that the mutual influence of the two hemispheres is important in the pathophysiology of the BG–cortex circuit and might be crucial in predicting treatments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Key words Substantia nigra ; MPTP ; Parkinsonism ; Primate ; Electrophysiology ; Basal ganglia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The basal ganglia are currently viewed as components of segregated corticosubcortical reentrant circuits. One of these circuits, the ”motor” circuit, is critically involved in the development of parkinsonian motor signs. Current pathophysiologic models postulate that parkinsonism is associated with increased activity in the basal ganglia output nuclei. The neuronal activity in the motor portion of one of these output nuclei, the internal segment of the globus pallidus (GPi), has been characterized in detail in intact and parkinsonian animals, but the neuronal activity in the second major basal ganglia output nucleus, the substantia nigra pars reticulata (SNr), has received far less attention. This study in primates represents a comparison of the effects of parkinsonism, induced by injections of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), on the neuronal discharge in the GPi and SNr. These electrophysiologic recording experiments were carried out in three African green and two rhesus monkeys. One hundred and twenty-four neurons were recorded in the GPi before treatment with MPTP, and 93 neurons thereafter. In the SNr, 55 cells were recorded before treatment with MPTP, and 41 cells thereafter. MPTP induced a non-significant increase in the average discharge rate and a significant decrease in the median interspike interval length (ISI) in the GPi (by 13%), whereas no changes were detected in either parameter in the SNr. The average ISI distributions were markedly asymmetric in both structures, and could be modeled by a logarithmic normal distribution. With the MPTP treatment, the mode of the ISI distribution fell by 24% in the GPi (P≤0.01), whereas it did not change significantly in the SNr. An algorithm that detects burst discharges in the raw ISI data (based on the method by Legendy and Salcman) detected a significant increase in the proportion of action potentials that participated in bursts of discharge in both structures (increase by 257% in the GPi, and by 67% in the SNr). Power spectral and autocorrelation analysis revealed that treatment with MPTP increased the proportion of cells with oscillatory burst patterns at 3–8 Hz in both structures (from 0.8% to 27% of all neurons in the GPi, and from none to 10% in the SNr). The results show that neuronal discharge in the SNr is affected in parkinsonism, but that the changes in the SNr are less pronounced then those seen in the GPi.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...