Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 2326-2333 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this paper a time evolution equation for internal kink oscillations is derived. It is valid for both stable and unstable plasma regimes, and incorporates the response of an energetic particle population. A linear analysis reveals a parallel between (i) the time evolution of the spatial derivative of the internal kink radial displacement and (ii) the time evolution of the perturbed particle distribution function in the field of an electrostatic wave (Landau problem). It is shown that diamagnetic drift effects make the asymptotic decay of internal kink perturbations in a stable plasma algebraic rather than exponential. However, under certain conditions the stable root of the dispersion relation can dominate the response of the on-axis displacement for a significant period of time. The form of the evolution equation naturally allows one to include a nonlinear, fully toroidal treatment of energetic particles into the theory of internal kink oscillations. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experiments in the Tokamak Fusion Test Reactor (TFTR) [Phys. Plasmas 2, 2176 (1995)] have explored several novel regimes of improved tokamak confinement in deuterium–tritium (D–T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high li). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through in situ deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (qa(approximate)4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-li plasmas produced by rapid expansion of the minor cross section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D–T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D–T plasmas with q0〉1 and weak magnetic shear in the central region, a toroidal Alfvén eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 3401-3406 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A novel type of ideal toroidal Alfvén eigenmode, localized in the low-shear core region of a tokamak plasma, is shown to exist, whose frequency is near the upper continuum of the toroidal Alfvén gap. This mode converts to a kinetic-type toroidal Alfvén eigenmode above a critical threshold that depends on aspect ratio, pressure gradient, and shear. Opposite to the usual ideal toroidal Alfvén eigenmode, this new mode is peaked in amplitude on the small-major-radius side of the plasma. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 1199-1213 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The stability of plasma flow in the scrape-off layer of a tokamak, taking into account the surface sheath impedance and the axial shear in the E×B flow is analyzed. An interesting stability problem arises in the limit that end plates are sufficiently far apart, so that stability can be analyzed when the plasma is taken to interact with a single end plate. As parameters are varied, windows of instability are found, and it is shown that growth rates are maximized for an insulating end plate and are also quite sensitive to the ratio of the ion diamagnetic and E×B drift frequencies. Mixing-length estimates of the diffusivity are comparable to experimentally observed values.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 1822-1829 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Many kinetic plasma instabilities, in quite different physical systems, share a genuinely similar mathematical structure near isolated phase-space islands. For this reason, dynamical features such as faster-than-exponential growth of the instability, as well as nonlinear frequency sweeping, are found to be universal. Numerical δf methods, which follow the evolution of the (nonlinear) perturbed distribution function along single-particle orbits, have been applied to analytic models, which include a continuous particle source, resonant particle collisions, and wave damping. The result is a series of codes that can reliably model the nonlinear evolution of kinetic instabilities, including some specific to tokamak plasmas, over experimentally relevant time scales. New results include (i) nonlinear simulations of two-species, one-degree-of-freedom plasmas; (ii) simulations of fishbone bursts in tokamak plasmas; (iii) nonlinear modeling of beam-driven toroidal Alfvén eigenmode activity in tokamaks. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Purely alpha-particle-driven toroidal Alfvén eigenmodes (TAEs) with toroidal mode numbers n=1–6 have been observed in deuterium–tritium (D–T) plasmas on the tokamak fusion test reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)]. The appearance of mode activity following termination of neutral beam injection in plasmas with q(0)〉1 is generally consistent with theoretical predictions of TAE stability [G. Y. Fu et al. Phys. Plasmas 3, 4036 (1996)]. Internal reflectometer measurements of TAE activity is compared with theoretical calculations of the radial mode structure. Core localization of the modes to the region of reduced central magnetic shear is confirmed, however the mode structure can deviate significantly from theoretical estimates. The peak measured TAE amplitude of δn/n∼10−4 at r/a∼0.3−0.4 corresponds to δB/B∼10−5, while δB/B∼10−8 is measured at the plasma edge. Enhanced alpha particle loss associated with TAE activity has not been observed. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 1827-1838 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A method is presented for predicting the saturation levels and particle transport in weakly unstable systems with a discrete number of modes. Conditions are established for either steady-state or pulsating responses when several modes are excited for cases where there is and there is not resonance overlap. The conditions for saturation and the associated transport are discussed. Depending on parameters, the saturation level can be low, with only a small fraction of the available free energy released to waves and with no global transport, or the saturation level can be quite high, with almost complete conversion of free energy to wave energy coupled with rapid transport. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 3007-3016 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A numerical procedure has been developed for the self-consistent simulation of the nonlinear interaction of energetic particles with discrete collective modes in the presence of a particle source and dissipation. A bump-on-tail instability model is chosen for these simulations. The model presents a kinetic nonlinear treatment of the wave–particle interaction within a Hamiltonian formalism. A mapping technique has been used in this model in order to assess the long time behavior of the system. Depending on the parameter range, the model shows either a steady-state mode saturation or quasiperiodic nonlinear bursts of the wave energy. It is demonstrated that the mode saturation level as well as the burst parameters scale with the drive in accordance with the analytical predictions. The threshold for the resonance overlap condition and particle global diffusion in the phase space are quantified. For the pulsating regime, it is shown that when γL(approximately-greater-than)0.16 ΔΩ, where γL is the linear growth rate for the unperturbed system and ΔΩ is the frequency separation of neighboring resonances, overlap occurs together with an amplification of the free energy release compared to what is expected with the saturation of nonoverlapping modes. The effect of particle losses on the wave excitation is included in the model, which illustrates in a qualitative way the bursting collective losses of fast ions/alpha particles due to Alfvén instabilities. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 1214-1225 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Alfvén continuum damping of the toroidal Alfvén eigenmodes is explicitly formulated for a large aspect ratio force-free tokamak using analytic continuation. A set of jump conditions across the Alfvén singularities are derived which have to be satisfied by the mode amplitudes. The method is then applied to a simple model equilibrium. The characteristics of the modes and their damping are investigated. The method is expected to be generalizable to models with more complete plasma dynamics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 30 (1989), S. 2527-2544 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: A general theory of wave tunneling in one dimension for Hermitian and nearly Hermitian vector systems of integral equations is presented. It describes mode conversion in terms of the general dielectric tensor of the medium and properly accounts for the forward and backward nature of the waves without regard to specific models. Energy conservation in the WKB approximation can be obtained for general Hermitian systems by the use of modified Furry rules that are similar to those used by Heading for second-order differential equations. Wave energy absorption can then be calculated perturbatively using the conservation properties of the dominant Hermitian operator. Operational graphical rules are developed to construct global wave solutions and to determine the direction of energy flow for spatially disconnected roots. In principle, these rules could be applied to systems with arbitrary mode complexity. Coupling coefficients for wave tunneling problems with up to four interacting modes are calculated explicitly.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...