Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2234
    Keywords: Key words: Solvation ; Electrostatics ; Generalised Born theory ; Salt effects ; Continuum solvent
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract. The Poisson–Boltzmann (PB) continuum solvent model shows considerable promise in providing a description of electrostatic solvation effects in biomolecules, but it can be computationally expensive to obtain converged results for large systems. Here we examine the performance of a pairwise generalized Born approximation (GB) method on multiple conformations of a small peptide, three proteins (protein A, myoglobin, and rusticyanin) and four RNA and DNA duplexes and hairpins containing 20–24 nucleotides. Charge and dielectric radii models were adapted from the CHARMM and Amber force fields. Finite difference PB calculations were carried out with the Delphi and PEP programs, and for several examples the matrix of all pairwise interaction energies was determined. In general, this parameterization of the GB model does an excellent job of reproducing the PB solvation energies for small molecules and for groups near the surface of larger molecules. There is a systematic tendency for this GB model to overestimate the effects of solvent screening (compared to PB) for pairs of buried atoms, but individual errors tend to cancel, and a good overall account of conformational energetics is obtained. A simple extension to the GB model to account for salt effects (in the linearized Debye–Hückel approximation) is proposed that does a good job of reproducing the salt dependence of the PB calculations. In many cases, it should be possible to replace PB calculations with much simpler GB models, but care needs to be taken for systems with extensive burial of charges or dipoles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0887-3585
    Keywords: Brownian dynamics ; molecular recognition ; site-directed mutagenesis ; facilitated diffusion ; crystal structure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Key charged residues in Cu,Zn superoxide dismutase (Cu,Zn SOD) promote electrostatic steering of the superoxide substrate to the active site Cu ion, resulting in dismutation of superoxide to oxygen and hydrogen peroxide. Lys-136, along with the adjacent residues Glu-132 and Glu-133, forms a proposed electrostatic triad contributing to substrate recognition. Human Cu,Zn SODs with single-site replacements of Lys-136 by Arg, Ala, Gln, or Glu or with a triple-site substitution (Glu-132 and Glu-133 to Gln and Lys-136 to Ala) were made to test hypotheses regarding contributions of these residues to Cu,Zn SOD activity. The structural effects of these mutations were modeled computationally and validated by the X-ray crystallographic structure determination of Cu,Zn SOD having the Lys-136-to-Glu replacement. Brownian dynamics simulations and multiple-site titration calculations predicted mutant reaction rates as well as ionic strength and pH effects measured by pulse-radiolytic experiments. Lys-136-to-Glu charge reversal decreased dismutation activity 50% from 2.2 × 109 to 1.2 × 109 M-1 s-1 due to repulsion of negatively charged superoxide, whereas charge-neutralizing substitutions (Lys-136 to Gln or Ala) had a less dramatic influence. In contrast, the triple-mutant Cu,Zn SOD (all three charges in the electrostatic triad neutralized) surprisingly doubled the reaction rate compared with wild-type enzyme but introduced phosphate inhibition. Computational and experimental reaction rates decreased with increasing ionic strength in all of the Lys-136 mutants, with charge reversal having a more pronounced effect than charge neutralization, implying that local electrostatic effects still govern the dismutation rates. Multiple-site titration analysis showed that deprotonation events throughout the enzyme are likely responsible for the gradual decrease in SOD activity above pH 9.5 and predicted a pKa value of 11.7 for Lys-136. Overall, Lys-136 and Glu-132 make comparable contributions to substrate recognition but are less critical to enzyme function than Arg-143, which is both mechanistically and electrostatically essential. Thus, the sequence-conserved residues of this electrostatic triad are evidently important solely for their electrostatic properties, which maintain the high catalytic rate and turnover of Cu,Zn SOD while simultaneously providing specificity by selecting against binding by other anions. Proteins 29:103-112, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...