Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 27 (1989), S. 2145-2151 
    ISSN: 0887-6266
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: NO Abstract.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 27 (1989), S. 2117-2130 
    ISSN: 0887-6266
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Phase behavior of blends of a liquid-crystalline (LC) polymer with a non-LC polymer and of a series of copolymers containing mesogenic and nonmesogenic units was studied by thermal, optical, and dynamic mechanical methods. The polymers composing the blends and the copolymers had the same constituent monomers. The blends exhibited phase separation over the whole range of compositions studied as observed by DSC and dynamic mechanical analysis. Two glass transition temperatures (Tg) corresponding to the two components and independence of melting (Tm) and isotropization temperatures (Ti) to changes in composition were observed for the blends. The copolymers did not show phase separation over most of the composition range studied. Only one Tg corresponding to that of the major component could be detected for the copolymers, and the Tg was found to increase with an increase in the amount of nonmesogenic monomer in the copolymers. The difference in phase behavior was explained on the basis of the chemical environment of the constituent units in the blends and in copolymers. Phase inversion in the blends was observed by microscopy when the blends contained 60 mol% or more of the non-LC polymer.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 28 (1990), S. 1677-1684 
    ISSN: 0887-6266
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The copolyester containing 40 mol % ethylene terephthalate (PET) and 60 mol % p-hydroxybenzoate (HB) units has been reported by several investigators to be biphasic in the solid and the liquid states. The reported thermal transitions in the two phases, however, are in part contradictory, perhaps partly due to different polymerization conditions. The present work is a study of the transitions in each of the two phases of this copolyester by polarized light microscopy and by light transmission measurements. By light transmission measurements, the two phases were found to have two different glass transition temperatures for the onset of segmental motion, consistent with two assignable temperatures (T.). Cold crystallization and melting in each of the two different phases was also detected. The results help clarify the nature of transitions and agree with the results of dynamic mechanical analysis on the same thermotropic liquid crystalline copolyester.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 32 (1994), S. 1023-1031 
    ISSN: 0887-6266
    Keywords: degree of crystallinity ; fully aromatic ; thermotropic homopolyester ; thermotropic copolyester ; x-ray diffraction ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The degree of crystallinity of as-made fully aromatic, thermotropic polyesters was determined for two different series of polymers, each of which contained a symmetric monomer having either pendant phenyl groups or fused aromatic rings by the WAXD technique. All of the homopolymers had a high degree of crystallinity in spite of bulky substituents attached to the mesogenic moiety. Surprisingly, the homopolymer of 2,6-naphthalenedicarboxylic acid with each of the monomers had a higher degree of crystallinity and Tm than those of the homopolymer of terephthalic acid with each of the respective monomers. As expected, on copolymerization with 30 mol % of either 4-hydroxybenzoic acid or 6-hydroxy-2-naphthoic acid, all of the resulting copolymers had a much lower degree of crystallinity and Tm/Tf values compared to those of the respective homopolymers in each series. © 1994 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...