Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: To investigate whether adaptive changes of glutamatergic transmission underlie dysfunction of the cholinergic system in experimental parkinsonism, the effects of group-II metabotropic glutamate and NMDA receptor ligands on acetylcholine release was studied in striatal slices and synaptosomes obtained from naive rats, 6-hydroxydopamine hemi-lesioned rats and 6-hydroxydopamine hemi-lesioned rats chronically treated with levodopa (l-DOPA) plus benserazide (non-dyskinetic). Group-II metabotropic glutamate receptor agonists LY354740, DCG-IV and l-CCG-I inhibited the electrically-evoked endogenous acetylcholine release from slices, while NMDA facilitated it. LY354740 also inhibited K+-evoked acetylcholine release from synaptosomes. LY354740-induced inhibition was prevented by the group-II metabotropic glutamate receptor antagonist LY341495. In hemi-parkinsonian rats, sensitivity towards LY354740 was reduced while that to NMDA was enhanced in the lesioned (denervated) compared with unlesioned striatum. Moreover, dizocilpine inhibited acetylcholine release in the lesioned compared with unlesioned striatum. Chronic treatment with l-DOPA normalized sensitivity towards glutamatergic agonists. We conclude that striatal dopamine denervation results in plastic changes at group-II metabotropic glutamate and NMDA receptors that may shift glutamatergic control of acetylcholine release towards facilitation. From a clinical perspective, l-DOPA and NMDA antagonists appear effective in counteracting overactivity of striatal cholinergic interneurones associated with Parkinson's disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Dual probe microdialysis was employed in conscious rats to investigate whether endogenous dopamine is involved in the stimulation of glutamate release in the substantia nigra pars reticulata following striatal NMDA receptor activation. Intrastriatal perfusion with NMDA (1 and 10 µm) facilitated nigral glutamate release (dizocilpine- and tetrodotoxin-sensitive). The D2 dopamine receptor antagonist raclopride increased spontaneous nigral glutamate release and caused a leftward shift in the NMDA sensitivity, lowering NMDA effective concentrations to submicromolar levels. Conversely, the D1 antagonist SCH23390 prevented the effect of NMDA (1 µm) and caused a rightward shift in the NMDA sensitivity. It was tested whether the antagonist effects were due to dopamine receptor blockade or increased tone on D1/D2 receptors. SCH23390 prevented the raclopride-induced enhancement of spontaneous but not NMDA-evoked glutamate release while raclopride left unchanged the SCH23390-induced inhibition. The physiopathological relevance of the dopaminergic modulation was strengthened by perfusing NMDA in the dopamine-depleted striatum of hemiparkinsonian rats. Nigral glutamate responsiveness to NMDA was enhanced as with raclopride. We conclude that endogenous striatal dopamine regulates both spontaneous and NMDA-induced nigral glutamate release via an opposite control mediated by D1 facilitatory and D2 inhibitory receptors. Alterations of this control may subserve the motor symptoms of Parkinson's disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We recently showed that pharmacological blockade of nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptors located in the substantia nigra stimulates the nigrostriatal dopaminergic pathway and motor behavior (Marti et al. J. Neurosci. 2004, 24, 6659–6666). To investigate whether such motor-stimulating action was dependent on functional dopaminergic transmission, the selective NOP receptor peptide antagonist [Nphe1,Arg14,Lys15]N/OFQ-NH2 (UFP-101) was microinjected into the substantia nigra reticulata of rats made cataleptic by systemic haloperidol administration. UFP-101 reduced haloperidol-induced akinesia as measured by immobility time in the bar test. UFP-101 also induced contralateral turning in cataleptic rats. To investigate the mechanisms involved in the anti-akinetic action of UFP-101, nigral glutamate release was monitored by microdialysis technique. The anti-akinetic action of UFP-101 correlated with normalization of nigral glutamate release, previously elevated by haloperidol injection. We conclude that endogenous N/OFQ in the substantia nigra sustains akinesia generated by impaired DA transmission and subthalamic nucleus overactivation. NOP receptor antagonists may be beneficial in the symptomatic therapy of parkinsonism, via normalization of subthalamonigral glutamatergic transmission.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The aim of the present microdialysis study was to investigate whether the increase in striatal glutamate levels induced by intrastriatal perfusion with NMDA was dependent on the activation of extrastriatal loops and/or endogenous striatal substance P and dopamine. The NMDA-evoked striatal glutamate release was mediated by selective activation of the NMDA receptor-channel complex and action potential propagation, as it was prevented by local perfusion with dizocilpine and tetrodotoxin, respectively. Tetrodotoxin and bicuculline, perfused distally in the substantia nigra reticulata, prevented the NMDA-evoked striatal glutamate release, suggesting its dependence on ongoing neuronal activity and GABAA receptor activation, respectively, in the substantia nigra. The NMDA-evoked glutamate release was also dependent on striatal substance P and dopamine, as it was antagonized by intrastriatal perfusion with selective NK1 (SR140333), D1-like (SCH23390) and D2-like (raclopride) receptor antagonists, as well as by striatal dopamine depletion. Furthermore, impairment of dopaminergic transmission unmasked a glutamatergic stimulation by submicromolar NMDA concentrations. We conclude that in vivo the NMDA-evoked striatal glutamate release is mediated by activation of striatofugal GABAergic neurons and requires activation of striatal NK1 and dopamine receptors. Endogenous striatal dopamine inhibits or potentiates the NMDA action depending on the strength of the excitatory stimulus (i.e. the NMDA concentration).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Dual probe microdialysis was employed to characterize dialysate glutamate levels from the substantia nigra pars reticulata of awake freely moving rats, and to test its sensitivity to alterations in striatal neurotransmission including striatal N-methyl-d-aspartic acid (NMDA) receptor stimulation and blockade. Intranigral perfusion with low (0.1 mm) Ca2+ medium (60 min) did not affect nigral glutamate levels, whereas intranigral perfusion with tetrodotoxin (10 μm, 60 min) increased nigral glutamate levels. Perfusion of KCl (100 mm, 10 min) in the dorsolateral striatum transiently stimulated nigral glutamate levels (maximal increase + 60%), whereas intrastriatal perfusion (60 min) with low Ca2+ medium and tetrodotoxin gradually increased nigral glutamate levels. Intrastriatal perfusion with NMDA (0.1–100 μm, 10 min) dose-dependently stimulated glutamate levels in the substantia nigra pars reticulata. The NMDA (1 μm)-induced increase in nigral glutamate release was transient and maximal (+60% within 20 min), whereas that for NMDA (10 μm) had a slow onset but was long lasting (+35% after 60 min). Lower (0.1 μm) and higher (100 μm) NMDA concentrations were ineffective. The effect of intrastriatal NMDA (1 μm) was prevented by coperfusion with MK-801 (1 μm). Intrastriatal MK-801 (10 μm) alone gradually increased glutamate levels up to +50% after 60 min of perfusion. The present results suggest that glutamate levels in the substantia nigra pars reticulata are sensitive to changes in neuronal transmission in the dorsolateral striatum, and that striatal NMDA receptors regulate nigral glutamate release in both a tonic and phasic fashion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: A synaptosomal preparation was employed to pharmacologically characterize the role of presynaptic nociceptin/orphanin FQ (N/OFQ) receptors (NOP receptors) in the regulation of 5-hydroxytryptamine release in the Swiss mouse neocortex. In the present study, the NOP receptor ligands N/OFQ, Ac-RYYRWK-NH2 and [Phe1ψ(CH2-NH)Gly2]N/OFQ(1–13)-NH2 inhibited the K+-induced [3H]-5-HT overflow with similar maximal effects (≈−35%) but different potencies (pEC50 of 8.56, 8.35 and 7.23, respectively). The novel agonist [Arg14,Lys15]N/OFQ also inhibited [3H]-5-HT overflow, but the concentration–response curve was biphasic and the efficacy higher (≈−45%). Receptor selectivity of NOP receptor agonists was demonstrated by showing that synaptosomes from NOP receptor knockout mice were unresponsive to N/OFQ, [Arg14,Lys15]N/OFQ and [Phe1ψ(CH2-NH)Gly2]N/OFQ(1–13)-NH2 but maintained full responsiveness to endomorphin-1. Moreover, the inhibitory effect of N/OFQ was prevented by peptide ([Nphe1]N/OFQ(1–13)-NH2 and UFP-101) and nonpeptide (J-113397 and JTC-801) NOP receptor selective antagonists. Desensitization occurred under perfusion with high (3 and 10 µm) N/OFQ concentrations. This phenomenon was prevented by the protein kinase C inhibitor, bisindolylmaleimide. Moreover, N/OFQ-induced desensitization did not affect mu opioid receptor responsiveness. Finally, it was observed in a similar preparation of rat cerebrocortical synaptosomes, although it was induced by higher N/OFQ concentrations than that used in the mouse. Together, these findings indicate that presynaptic NOP receptors inhibit 5-hydroxytryptamine release in the mouse neocortex. Based on present and previous studies, we conclude that NOP receptors in the mouse are subtly different from the homologous receptor population in the rat, strengthening the view that there exist species differences in the pharmacology of central NOP receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Rat striatal synaptosomes and slices were used to investigate the responsiveness of different populations of nerve terminals to 3-nitropropionic acid (3-NP), a suicide inhibitor of the mitochondrial enzyme succinate dehydrogenase, and to elucidate the ionic mechanisms involved. 3-NP (0.3–3 mm) stimulated spontaneous γ-aminobutyric acid (GABA), glutamate and [3H]-dopamine efflux but left unchanged acetylcholine efflux from synaptosomes. This effect was associated with a 〉70% inhibition of succinate dehydrogenase, as measured in the whole synaptosomal population. The facilitation was not dependent on extracellular Ca2+ but relied on voltage-dependent Na+ channel opening, because it was prevented by tetrodotoxin and riluzole. 3-NP also elevated spontaneous glutamate efflux from slices but in a tetrodotoxin-insensitive way. To investigate whether energy depletion could change the responsiveness of nerve endings to a depolarizing stimulus, synaptosomes were pretreated with 3-NP and challenged with pulses of KCl evoking ‘quasi-physiological’ neurotransmitter release. 3-NP potentiated the K+-evoked GABA, glutamate and [3H]-dopamine release but inhibited the K+-evoked acetylcholine release. The 3-NP induced potentiation of GABA release was Ca2+-dependent and prevented by tetrodotoxin and riluzole whereas the 3-NP-induced inhibition of acetylcholine release was tetrodotoxin- and riluzole-insensitive but reversed by glipizide, an ATP-dependent K+ channel inhibitor. We conclude that the responsiveness of striatal nerve endings to 3-NP relies on activation of different ionic conductances, and suggest that the selective survival of striatal cholinergic interneurons following chronic 3-NP treatment (as in models of Huntington's disease) may rely on the opening of ATP-dependent K+ channels, which counteracts the fall in membrane potential as a result of mitochondrial impairment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 20 (1964), S. 677-678 
    ISSN: 1420-9071
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Riassunto La scopolamina riduce la acetilcolina totale nella corteccia cerebrale, bulbo olfattorio, nucleo caudato, ma non nel talamo e cervelletto. La attività colinacetilasica aumenta nelle zone dove si manifesta la riduzione di neurormone. Ciò suggerisce che la scopolamina stimoli soprattutto strutture colinergiche telencefaliche.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...