Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    International journal of cosmetic science 23 (2001), S. 0 
    ISSN: 1468-2494
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Surface structure and surface mechanical properties of human hair have been characterized by atomic force microscopy in the imaging mode and by force vs. distance, F-d, analysis. The effects of treatment by commercial conditioner/shampoo or by aqueous exposure have been investigated. The cuticular structure has been imaged at medium resolution; longitudinal striations with lateral spacings of 150–350 nm and vertical corrugations in the range 2–8 nm were observed at higher resolution. The features are similar to those observed for untreated wool fibre. Both adventitious debris/contamination and residues from cosmetic treatment can be imaged with resolution in the low-nanometre range. Removal of the cuticular surface layer from treatment with alkali solution, and subsequent imaging, revealed a fibrous substructure. F-d analysis of the surface is a rich source of spatially resolved mechanical and chemical information. Surface stiffness, and an equivalent Young's Modulus, E, can be inferred from the shape of the ‘approach’ tip-to-surface contact curve. A value of E of ≈ 10 MPa was obtained for untreated hair. During aqueous exposure for 1 h the stiffness and modulus decreased by approximately a factor of 10. The discontinuity seen at ‘lift-off’ during the retract half-cycle of F-d analysis represents a measure of tip-to-surface adhesion. Adhesion decreased during aqueous exposure and was below the level of detectability after 1 h. Likewise, treatment by conditioner had the effect of lowering adhesion. High resolution F-d data revealed features that are consistent with the presence of a thin and readily compressible surface layer, probably analogous to the surface lipid layer on untreated wool fibre.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...