Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1351
    Keywords: Aplysia ; Bag cells ; Retrograde labelling ; Rhodamine ; conjugated latex microspheres ; Egglaying behavior
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Three lines of evidence are presented indicating that axons of the Aplysia neuroendocrine bag cells extend into the head-ring ganglia of the CNS. When the abdominal ganglion was bisected longitudinally, separating the two bag cell clusters, an afterdischarge induced in one cluster generated an afterdischarge in the other via activity through the head-ring ganglia to which each half abdominal ganglion was attached by connective nerves. This suggests that some axons of bag cells in each cluster communicate through the head-ring ganglia. Retrograde labelling of bag cells occurred when rhodamine-onjugated latex microspheres were injected into the cerebral or either pleural ganglion, a direct demonstration that bag cell axons extend into these ganglia. Finally, cell LP1 in the left pleural ganglion was inhibited during a bag cell afterdischarge, an action mimicked by application of alpha-bag cell peptide (αBCP). Since αBCP can act only close to its site of release due to susceptibility to peptidase activity, it is likely that LP1 inhibition is dependent on the local release of αBCP from bag cell neurites in the pleural ganglion. These results open new possibilities for how bag cell afterdischarges may be initiated and broaden the distribution of their effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 10 (1981), S. 729-747 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The two bilateral clusters of neurosecretory bag cells ofAplysia were studied with both light and electron microscopy. Autoradiography revealed that the bag cells rapidly accumulate3H-labelled amino acids and that after 1–2 h, heavy concentrations of silver grains appear over Golgi complexes and in the proximal axons. Intrasomatic injections of CoCl2 or lucifer yellow showed clear branch points and numerous varicosities along individual axons. Many of the bag cells are multipolar. Electron-microscopic observations confirmed that individual fibres branch and showed that the varicosities are packed with dense-cored vesicles similar in size (180 nm diameter) and electron density to those found in the somata. The axons of several cells are usually associated into bundles that travel (within the connective tissue sheath) either rostrally up the pleurovisceral connective or toward the contralateral bag cell cluster. Bundled in groups of tens to hundreds, a total of many thousands of axons fill the sheath around each cell cluster and around the proximal 2–5 mm of the pleurovisceral connective; the number of axon bundles in the sheath decreases rapidly with distance from the cluster. Individual axons reaching the outer edges of bundles form neurosecretory endings near blood sinuses in the sheath, creating an extensive neurohemal release area. Dense-cored vesicles are packed into the endings, often in very close apposition to the plasma membrane. Possible release profiles (omega-shaped) and smaller clear vesicles (85 nm diameter) were observed in the axon endings. A number of axons also enter and travel among the conventional (non-neurosecretory) axons in the core of the pleurovisceral connective nerve. These ‘core’ bag cell axons project for several millimetres beyond the terminations of the bundled axons of the sheath. The findings support the hypothesis proposed in physiological studies that the distribution and branching of the axonal tree are the basis for the extracellularly recorded wave forms and of the potentiation of electrical signals during bag-cell activity. Additional evidence indicates that exocytosis is the means by which bag-cell hormone is released during afterdischarges.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-136X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary 1. Endogenous peptides induced egg laying in the marine molluscAplysia in two ways: egg-laying hormone (ELH) from the neuroendocrine bag cells acts directly, causing the release of eggs from the ovotestis; peptides A and B from the atrial gland act indirectly, activating the bag cells to release ELH. Another atrial gland peptide (egg-releasing hormone; ERH) is a structural and functional hybrid of ELH and peptides A and B; it can act both directly and indirectly to induce egg laying. 2. Atrial glands were incubated in a mixture of3H-amino acids for 18 h, and the biosynthetically labelled peptides isolated using sequential Sephadex G-50 column chromatography and isoelectric focusing. Radiolabelled peaks were localized and bioassayed in intact animals. Bioactive peaks were then characterized functionally using two additional assays: egg laying in bag cell-less animals (ELH-like peptides) and in vitro induction of bag cell discharge (A- and B-like peptides). ERH-like molecules are active in both assays. Homogeneity of bioactive IEF peaks was assessed by SDS-PAGE. 3. Sephadex G-50 gel filtration of biosynthetically labelled atrial gland extracts reveals two major peptide peaks. Peak D (apparentM r 6,000) is strongly radiolabelled and contains most of the egg-laying activity, but has a low absorbance at 274 nm. Peak E (apparentM r 3,500) is weakly labelled and contains a small proportion of the total egg-laying activity, but has a large absorbance at 274 nm. 4. Isoelectric focusing of radiolabelled peptides in peak D reveals seven distinct ELH-like species (pI 5.5, 7.5, 8.5, 8.7, 8.9, 9.1, 9.4), and two peaks (pI 5.9, 8.1) that have both ELH-like and A-/B-like activity. The pI 8.1 peak may result from the comigration of peptide A with ERH or with an unidentified ELH-like peptide. It is not yet clear whether the pI 5.9 activity results from comigration of distinct peptides or from the presence of a previously uncharacterized ERH-like molecule. 5. Isoelectric focusing of radiolabelled peptides in peak E reveals five distinct ELH-like species (pI 7.3, 8.5, 8.7, 9.1, 9.4), and one peak (pI 8.9) with both ELH-like and A-/B-like activity. The pI 8.9 peak may result from the comigration of an ELH-like peptide with peptide B. Three of the ELH-like peptides (pI 8.5, 8.9, 9.1) found in peak E are probably identical to the ELH-like peptides found at the same pI's in peak D. 6. The ELH-like pI 7.5 species is a peptide complex held together by a disulfide linkage and hydrophobic interactions. The complex dissociates when treated with 2-mercaptoethanol and pyridine, resulting in a reduction in apparent molecular weight, and the appearance of one basic (pI 9.4) and two acidic (pI 3.3, 3.8) peptides. The pI 9.4 peptide presumably accounts for the ELH-like activity of the parent pI 7.5 complex but differs, based on its mobility on SDS-PAGE, from the pI 9.4 ELH-like peptide(s) described above. 7. These studies, utilizing a two-step purification procedure, functional bioassays, and SDS-PAGE to assess peptide homogeneity, indicate that atrial gland cells synthesize a surprisingly large number of peptides that can induce egg laying inAplysia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The anatomy and functional morphology of the large hermaphroditic duct of three species of gastropod mollusc (Aplysia californica, A. dactylomela, and A. brasiliana) were examined. Each duct is composed of two parallel compartments, the red hemiduct (RHD) and the white hemiduct (WHD), which are distinguishable from the outside of the duct. Four secretory regions, all exocrine in morphology, are recognizable: the RHD secretory epithelium, the atrial gland (or atrial gland-like epithelium), the WHD secretory epithelium, and the accessory gland of the copulatory duct (AGCD). Of these regions, only the atrial gland (or atrial gland-like epithelium) contains egg-laying activity and only the atrial gland (or atrial gland-like epithelium) is immunocytochemically labeled by serum antibodies generated against low molecular weight. A. californica atrial gland peptides. The RHD is the functional oviduct: the egg cordon passes through a channel lined by the RHD secretory epithelium and bordered by the atrial gland (or atrial gland-like epithelium); the eggs are separated from both the WHD secretory epithelium and the AGCD by internal folds of the duct. The WHD is the functional copulatory duct: the penis, exogenous sperm, and endogeneous sperm pass directly by the AGCD and in close proximity to the WHD secretory epithelium; they are separated from both the RHD secretory epithelium and the atrial gland (or atrial gland-like epithelium) by internal folds. The atrial gland (or atrial gland-like epithelium) is thus not likely to have a prostatic function or to be directly stimulated by the penis during copulation; it may play a role in oviductal function.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...