Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 75 (1994), S. 5110-5113 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The band gap and microstructure of Ga0.5In0.5P have been shown to vary with deposition conditions. However, growth on (511)B GaAs substrates has been reported to give Ga0.5In0.5P with band gaps close to that of disordered material. It is shown here, that with appropriate selection of the growth parameters, Ga0.5In0.5P can be grown with low band gap and significant ordering on even the (511)B substrates, implying that surface steps play an important role in the ordering process. For the lattice-matched composition, a band gap of 1.83 eV was obtained using low growth temperature (575 °C), low growth rate (0.55 μm/h), and high phosphine pressure (5 Torr).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The formation chemistry and growth dynamics of thin-film CuInSe2 grown by physical vapor deposition have been considered along the reaction path leading from the CuxSe:CuInSe2 two-phase region to single-phase CuInSe2. The (Cu2Se)β(CuInSe2)1−β (0〈β≤1) mixed-phase precursor is created in a manner consistent with a liquid-phase assisted growth process. At substrate temperatures above 500 °C and in the presence of excess Se, the film structure is columnar through the film thickness with column diameters in the range of 2.0–5.0 μm. Films deposited on glass are described as highly oriented with nearly exclusive (112) crystalline orientation. CuInSe2:CuxSe phase separation is identified and occurs primarily normal to the substrate plane at free surfaces. Single-phase CuInSe2 is created by the conversion of the CuxSe into CuInSe2 upon exposure to In and Se activity. Noninterrupted columnar growth continues at substrate temperatures above 500 °C. The addition of In in excess of that required for conversion produces an In-rich near-surface region with a CuIn3Se5 surface chemistry. A model is developed that describes the growth process. The model provides a vision for the production of thin-film CuInSe2 in industrial scale systems. Photovoltaic devices incorporating Ga with total-area efficiencies of 14.4%–16.4% have been produced by this process and variations on this process. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 64 (1994), S. 3600-3601 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Epitaxial growth of the ordered vacancy compound CuIn3Se5 has been achieved on GaAs (100) by molecular beam epitaxy from Cu2Se and In2Se3 sources. Electron probe microanalysis and x-ray diffraction have confirmed the composition for the 1-3-5 phase and that the films are single-crystal CuIn3Se5 (100). Transmission electron microscopy characterization of the material also showed it to be single crystalline. Structural defects in the layer consisted mainly of stacking faults. Photoluminescence measurements performed at 7.5 K indicate that the band gap is 1.28 eV. Raman spectra reveal a strong polarized peak at 152 cm−1, which is believed to arise from the totally symmetric vibration of the Se atoms in the lattice.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...