Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2234
    Keywords: Correlation energy ; Many-body perturbation theory ; Localized orbitals
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The second-order energy corrections are calculated for some normal saturated hydrocarbons by using the many body-perturbation theory (MBPT) based on localized orbitals. The correlation energies are expressed as the sum of contributions from virtual orbital pairs. We have found that these contributions are transferable and have interesting structural features: the trans-coplanar effects are relatively large. Partitioning the correlation energies according to the “order of neighbourhood” we have found that the zero order effects are the largest but the first and second neighbour contributions are also important.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 38 (1990), S. 215-219 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The application of the MBPT in the localized representation requires that both the occupied and the virtual orbitals obtained by the canonical HF equation should be localized. The localization of the occupied orbitals is straightforward in general by any localization method. It is shown that by using Boys' method the localized virtual orbitals are spatially well separated and transferable not only in minimal basis sets.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 38 (1990), S. 139-147 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Diagrammatic formulation of the MBPT is applied when the occupied and the virtual canonical orbitals are separately localized by unitary transformations. In this localized representation, due to the off-diagonal Fock matrix elements, the perturbation operator contains extra terms generating the so-called localization corrections. These corrections enter the perturbation energy in third and higher orders. Their magnitude depends on the type of localization, but they represent only a small fraction of the canonical corrections. The calculation of the localization corrections, however, does not need a significant amount of extra computer time. It is shown that by introducing an “order of neighborhood” local and nonlocal effects of the electron correlation can be separated and the contribution of the nonlocal effects can be neglected to a good approximation. Ab initio calculations have been carried out for the normal saturated hydrocarbons: C2n+1H4n+4 and for the all-trans conjugated polyenes C2n+2H2n+4. As to the ratio of the local and nonlocal corrections, it is shown that there is only a quantitative difference for these two kinds of systems (strongly or weakly localizable). Neglecting nonlocal effects, considerable amount of computer time can be saved.
    Additional Material: 8 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...