Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
  • 1
    Digitale Medien
    Digitale Medien
    Amsterdam : Elsevier
    Advances in Space Research 13 (1993), S. 71-74 
    ISSN: 0273-1177
    Quelle: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Thema: Maschinenbau , Physik
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1572-9672
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract Corotating Interaction Regions (CIRs) form as a consequence of the compression of the solar wind at the interface between fast speed streams and slow streams. Dynamic interaction of solar wind streams is a general feature of the heliospheric medium; when the sources of the solar wind streams are relatively stable, the interaction regions form a pattern which corotates with the Sun. The regions of origin of the high speed solar wind streams have been clearly identified as the coronal holes with their open magnetic field structures. The origin of the slow speed solar wind is less clear; slow streams may well originate from a range of coronal configurations adjacent to, or above magnetically closed structures. This article addresses the coronal origin of the stable pattern of solar wind streams which leads to the formation of CIRs. In particular, coronal models based on photospheric measurements are reviewed; we also examine the observations of kinematic and compositional solar wind features at 1 AU, their appearance in the stream interfaces (SIs) of CIRs, and their relationship to the structure of the solar surface and the inner corona; finally we summarise the Helios observations in the inner heliosphere of CIRs and their precursors to give a link between the optical observations on their solar origin and the in-situ plasma observations at 1 AU after their formation. The most important question that remains to be answered concerning the solar origin of CIRs is related to the origin and morphology of the slow solar wind.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1572-9672
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract Corotating interaction regions (CIRs) in the middle heliosphere have distinct morphological features and associated patterns of turbulence and energetic particles. This report summarizes current understanding of those features and patterns, discusses how they can vary from case to case and with distance from the Sun and possible causes of those variations, presents an analytical model of the morphological features found in earlier qualitative models and numerical simulations, and identifies aspects of the features and patterns that have yet to be resolved.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Springer
    Annales geophysicae 16 (1997), S. 1-24 
    ISSN: 0992-7689
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie , Physik
    Notizen: Abstract Plasma and magnetic field data from the Helios 1/2 spacecraft have been used to investigate the structure of magnetic clouds (MCs) in the inner heliosphere. 46 MCs were identified in the Helios data for the period 1974–1981 between 0.3 and 1 AU. 85% of the MCs were associated with fast-forward interplanetary shock waves, supporting the close association between MCs and SMEs (solar mass ejections). Seven MCs were identified as direct consequences of Helios-directed SMEs, and the passage of MCs agreed with that of interplanetary plasma clouds (IPCs) identified as white-light brightness enhancements in the Helios photometer data. The total (plasma and magnetic field) pressure in MCs was higher and the plasma-β lower than in the surrounding solar wind. Minimum variance analysis (MVA) showed that MCs can best be described as large-scale quasi-cylindrical magnetic flux tubes. The axes of the flux tubes usually had a small inclination to the ecliptic plane, with their azimuthal direction close to the east-west direction. The large-scale flux tube model for MCs was validated by the analysis of multi-spacecraft observations. MCs were observed over a range of up to ∼60° in solar longitude in the ecliptic having the same magnetic configuration. The Helios observations further showed that over-expansion is a common feature of MCs. From a combined study of Helios, Voyager and IMP data we found that the radial diameter of MCs increases between 0.3 and 4.2 AU proportional to the distance, R, from the Sun as R0.8 (R in AU). The density decrease inside MCs was found to be proportional to R−2.4, thus being stronger compared to the average solar wind. Four different magnetic configurations, as expected from the flux-tube concept, for MCs have been observed in situ by the Helios probes. MCs with left-and right-handed magnetic helicity occurred with about equal frequencies during 1974–1981, but surprisingly, the majority (74%) of the MCs had a south to north (SN) rotation of the magnetic field vector relative to the ecliptic. In contrast, an investigation of solar wind data obtained near Earth’s orbit during 1984–1991 showed a preference for NS-clouds. A direct correlation was found between MCs and large quiescent filament disappearances (disparition brusques, DBs). The magnetic configurations of the filaments, as inferred from the orientation of the prominence axis, the polarity of the overlying field lines and the hemispheric helicity pattern observed for filaments, agreed well with the in situ observed magnetic structure of the associated MCs. The results support the model of MCs as large-scale expanding quasi-cylindrical magnetic flux tubes in the solar wind, most likely caused by SMEs associated with eruptions of large quiescent filaments. We suggest that the hemispheric dependence of the magnetic helicity structure observed for solar filaments can explain the preferred orientation of MCs in interplanetary space as well as their solar cycle behavior. However, the white-light features of SMEs and the measured volumes of their interplanetary counterparts suggest that MCs may not simply be just Hα-prominences, but that SMEs likely convect large-scale coronal loops overlying the prominence axis out of the solar atmosphere.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Springer
    Space science reviews 70 (1994), S. 215-220 
    ISSN: 1572-9672
    Schlagwort(e): Erupting Prominences ; Magnetic Clouds
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract Large amounts of coronal material are propelled outward into interplanetary space by Coronal Mass Ejections (CMEs). Thus one might expect to find evidence for expanding flux ropes in the solar wind as well. To prove this assumption magnetic clouds were analyzed and correlated with Hα-observations of disappearing filaments. When clouds were found to be directly associated with a disappearing filament, the magnetic structure of the cloud was compared with that of the associated filament. Additionally the expansion of magnetic clouds was examined over a wide range of the heliosphere and compared with the expansion observed for erupting prominences.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...