Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Different strains of Bacillus were screened for their ability to hydrolyse d-alanyl-p-nitroanilide. Activity was detected in Bacillus pumilus, Bacillus brevis, Bacillus licheniformis 749I and Bacillus subtilis 168. The last strain was the best producer and was selected for the production and purification of the enzyme. The determination of the N-terminal sequence identified the enzyme as the product of the dppA gene (previously named dciAA) belonging to the dipeptide ABC transport (dpp) operon expressed early during sporulation. Open reading frames (ORFs) encoding putative related proteins were found in the genomes of a variety of Archaea and both sporulating and non-sporulating bacteria. The enzyme behaves as a d-aminopeptidase and represents the prototype of a new peptidase family. Among the tested substrates, the highest activities were found with d-Ala-d-Ala and d-Ala-Gly-Gly. The active enzyme behaves as an octamer of identical 30 kDa subunits. It exhibits a broad pH optimum, extending between pH 9 and 11. It is reversibly inhibited in the presence of Zn2+ chelators, and the sequence comparisons highlight the conservation of potential Zn-binding residues. As it has been shown by others that null mutations in the dpp operon do not inhibit spore formation, the physiological role of DppA is probably an adaptation to nutrient deficiency.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0887-3585
    Keywords: β-lactamase ; homology-modeling ; carbapenems ; disulfide bridge ; kinetics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Bacterial resistance to β-lactam antibiotics, a clinically worrying and recurrent problem, is often due to the production of β-lactamases, enzymes that efficiently hydrolyze the amide bond of the β-lactam nucleus. Imipenem and other carbapenems escape the activity of most active site serine β-lactamases and have therefore become very popular drugs for antibacterial chemotherapy in the hospital environment. Their usefulness is, however, threatened by the appearance of new β-lactamases that efficiently hydrolyze them. This study is focused on the structure and properties of two recently described class A carbapenemases, produced by Serratia marcescens and Enterobacter cloacae strains and leads to a better understanding of the specificity of β-lactamases. In turn, this will contribute to the design of better antibacterial drugs. Three-dimensional models of the two class A carbapenemases were constructed by homology modeling. They suggested the presence, near the active site of the enzymes, of a disulfide bridge (C69-C238) whose existence was experimentally confirmed. Kinetic parameters were measured with the purified Sme-1 carbapenemase, and an attempt was made to explain its specific substrate profile by analyzing the structures of minimized Henri-Michaelis complexes and comparing them to those obtained for the “classical” TEM-1 β-lactamase. The peculiar substrate profile of the carbapenemases appears to be strongly correlated with the presence of the disulfide bridge between C69 and C238. Proteins 27:47-58 © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...