Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 11 (1999), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: It has been suggested that, after ischaemia, activation of proteases such as calpains could be involved in cytoskeletal degradation leading to neuronal cell death. In vivo, calpain inhibitors at high doses have been shown to reduce ischaemic damage and traumatic brain injury, however, the relationship between calpain activation and cell death remains unclear. We have investigated the role of calpain activation in a model of ischaemia based on organotypic hippocampal slice cultures using the appearance of spectrin breakdown products (BDPs) as a measure of calpain I activation. Calpain I activity was detected on Western blot immediately after a 1-h exposure to ischaemia. Up to 4 h post ischaemia, BDPs were found mainly in the CA1 region and appeared before uptake of the vital dye propidium iodide (PI). 24 h after the insult, BDPs were detected extensively in CA1 and CA3 pyramidal cells, all of which was PI-positive. However, there were many more PI-positive cells that did not have BDPs, indicating that the appearance of BDPs does not necessarily accompany ischaemic cell death. Inhibition of BDP formation by the broad-spectrum protease inhibitor leupeptin was not accompanied by any neuroprotective effects. The more specific and more cell-permeant calpain inhibitor MDL 28170 had a clear neuroprotective effect when added after the ischaemic insult. In contrast, when MDL 28170 was present throughout the entire pre- and post-incubation phases, PI labelling actually increased, indicating a toxic effect. These results suggest that calpain activation is not always associated with cell death and that, while inhibition of calpains can be neuroprotective under some conditions, it may not always lead to beneficial outcomes in ischaemia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1463
    Keywords: GDNF ; in situ hybridization ; cell death ; Parkinson's disease ; adult ; newborn infant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for dopaminergic neurons. Since dopaminergic neurons degenerate in Parkinson's disease, this factor is a potential therapeutical tool that may save dopaminergic neurons during the pathological process. Moreover, a reduced GDNF expression may be involved in the pathophysiology of the disease. In this study, we tested whether altered GDNF production may participate in the mechanism of cell death in this disease. GDNF gene expression was analyzed by in situ hybridization using riboprobes corresponding to a sequence of the exon 2 human GDNF gene. Experiments were performed on tissue sections of the mesencephalon and the striatum from 8 patients with Parkinson's disease and 6 control subjects matched for age at death and for post mortem delay. No labelling was observed in either group of patients. This absence of detectable expression could not be attributed to methodological problems as a positive staining was observed using the same probes for sections of astroglioma biopsies from human adults and for sections of a newborn infant brain obtained at post-mortem. These data suggest that GDNF is probably expressed at a very low level in the adult human brain and its involvement in the pathophysiology of Parkinson's disease remains to be demonstrated. GDNF may represent a powerful new therapeutic agent for Parkinson's disease, however.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...