Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 9243-9252 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A parallel version of D. Neuhauser's filter diagonalization algorithm is presented. In contrast to the usual procedure of acting with a set of narrow filter operators on a single or just a few initial vectors, parallelizability is achieved by working with a single, broad filter operator and a correspondingly large number of initial vectors. Apart from the obvious speedup in computation time, there is no need for communication between the processors involved in the computation. Furthermore, because a significantly reduced number of matrix vector multiplications is needed per initial vector, parallel filter diagonalization is numerically more stable than the single processor approach. It is argued that this method is particularly attractive for calculating eigenvectors of the large-scale secular matrices arising in quantum chemistry, especially in dense spectral regions. An application to dense state distributions of a cationic molecular cluster serves as an illustrative example. This is the first time filter diagonalization is used as a tool for ab initio electronic structure calculations. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...