Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0827
    Keywords: Key words: Bone length growth — Growth plate — Chondrocytic domain — Matrix — Hypertrophic chondrocyte.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract. In this study, we tested the hypotheses that (a) both the domain volume (volume of the cell and the matrix it has formed) and matrix volume of juxtametaphyseal hypertrophic chondrocytes in the growth plate is tightly controlled, and that (b) the domain volume of juxtametaphyseal hypertrophic chondrocytes is a strong determinant of the rate of bone length growth. We analyzed the rate of bone length growth (oxytetracycline labeling techniques) and nine stereologic and kinetic parameters related to the juxtametaphyseal chondrocytic domain in the proximal and distal radial and tibial growth plates of 21- and 35-day-old rats. The domain volume increased with increasing growth rates, independent of the location of the growth plate and the age of the animal. Within age groups, the matrix volume per cell increased with increasing growth rates, but an identical growth plate had the same matrix volume per cell in 21- and 35-day-old rats. The most suitable regression model (R 2= 0.992) to describe the rate of bone length growth included the mean volume of juxtametaphyseal hypertrophic chondrocytes and the mean rate of cell loss/cell proliferation. This relationship was independent of the location of the growth plate and the age of the animal. The data suggest that the domain volume of juxtametaphyseal hypertrophic chondrocytes, as well as the matrix volume produced per cell, may be tightly regulated. In addition, the volume of juxtametaphyseal hypertrophic chondrocytes and the rate of cell loss/rate of cell proliferation may play the most important role in the determination of the rate of bone length growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 239 (1994), S. 255-268 
    ISSN: 0003-276X
    Keywords: Growth plate ; Chondrocytes ; Enlargement ; Cell shape ; Hypertrophy ; Rats ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Background: It has been suggested that within the growth plate, the final volume and shape of hypertrophic chondrocytes are important variables in determining the rate of longitudinal bone growth. To better understand the organization and regulation of chondrocytic hypertrophy as related to longitudinal bone growth, the beginning and end, and the location and magnitude of chondrocytic volume and shape changes during the hypertrophic process were defined in the proximal tibial growth plate of 35-day-old rats.Methods: In this study we used two different approaches, a stereological analysis of chondrocytes in unbiasedly defined, narrow growth plate strata, and a serial section reconstruction and measurement of individual cells. In both experiments chondrocytes were preserved using optimal chemical fixation. Proliferating chondrocytes were identified using bromodeoxyruidine labelling, and the rat of longitudinal bone growth was determined using oxytetracycline labelling.Results: In both studies, immediately following cell division in the proliferative zone, chondrocytic volume gradually increased toward the midpoint of the growth plate. During this phase of about 30 hours, approximately 20% of the final cell volume was obtained. During the following 20 hours the remaining 80% was acquired. The estimated rate of cell volume increased changed from approximately 50 μm3/hr during the first 30 hours to about 800 μm3/hr during the last 20 hours. The increase in cell volume resulted in an increase in both the vertical and the horizontal chondrocytic diameters. Cell parameters did not change during the final five hours of the maturation process.Conclusions: In this study we demonstrated that chondrocytic enlargement starts immediately following cell division in the proliferative zone, and that chondrocytic enlargement consists of two morphologically distinguishable phases. The transition point between the first and the second phase of chondrocytic enlargement corresponded with the junction between the proliferative zone and the maturation zone. © 1994 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...