Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: The novel NAD+-linked opine dehydrogenase from a soil isolate Arthrobacter sp. strain 1C belongs to an enzyme superfamily whose members exhibit quite diverse substrate specificites. Crystals of this opine dehydrogenase, obtained in the presence or absence of co-factor and substrates, have been shown to diffract to beyond 1.8 Å resolution. X-ray precession photographs have established that the crystals belong to space group P21212, with cell parameters a = 104.9, b = 80.0, c = 45.5 Å and a single subunit in the asymmetric unit. The elucidation of the three-dimensional structure of this enzyme will provide a structural framework for this novel class of dehydrogenases to enable a comparison to be made with other enzyme families and also as the basis for mutagenesis experiments directed towards the production of natural and synthetic opine-type compounds containing two chiral centres.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0887-3585
    Keywords: crystallography ; protein structure ; refinement ; dinucleotide binding domain ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The three-dimensional crystal structure of the NAD+-linked glutamate dehydrogenase from Clostridium symbiosum has been solved to 1.96 Å resolution by a combination of isomorphous replacement and molecular averaging and refined to a conventional crystallographic R factor of 0.227. Each subunit in this multimeric enzyme is organised into two domains separated by a deep cleft. One domain directs the self-assembly of the molecule into a hexameric oligomer with 32 symmetry. The other domain is structurally similar to the classical dinucleotide binding fold but with the direction of one of the strands reversed. Difference Fourier analysis on the binary complex of the enzyme with NAD+ shows that the dinucleotide is bound in an extended conformation with the nicotinamide moiety deep in the cleft between the two domains. Hydrogen bonds between the carboxyamide group of the nicotinamide ring and the side chains of T209 and N240, residues conserved in all hexameric GDH sequences, provide a positive selection for the syn conformer of this ring. This results in a molecular arrangement in which the A face of the nicotinamide ring is buried against the enzyme surface and the B face is exposed, adjacent to a striking cluster of conserved residues including K89, K113, and K125. Modeling studies, correlated with chemical modification data, have implicated this region as the glutamate/2-oxoglutarate binding site and provide an explanation at the molecular level for the B type stereospecificity of the hydride transfer of GDH during the catalytic cycle.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...