Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 20 (1991), S. 289-300 
    ISSN: 0886-1544
    Keywords: stable microtubules ; detyrosinated α-tubulin ; microtubule organizing center ; trans Golgi network ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Stable subsets of microtubules (MTs) are often enriched in detyrosinated α-tubulin. Recently it has been found that the Golgi apparatus is associated with a subset of relatively stable MTs and that detyrosinated MTs colocalize spatially and temporally with the Golgi apparatus in several cell lines. To determine whether the Golgi apparatus actively stabilizes associated MTs and thus allows their time-dependent detyrosination, we have used the drug brefeldin A (BFA) to disrupt the Golgi apparatus and have monitored changes in the Golgi apparatus and MT populations using simultaneous immunofluorescence and fluorescent lectin microscopy. We found that although BFA caused the Golgi apparatus to completely redistribute to the endoplasmic reticulum (ER), the detyrosinated MTs were not disrupted and remained in a juxtanuclear region. By Western blot analysis we found that even after 6 h of continuous exposure of cells to BFA, there was no detectable reduction in the level of detyrosinated α-tubulin. Simultaneous treatment with nocodazole and BFA led to a complete disruption of all MTs and normal Golgi structure/organization. Upon removal of nocodazole in the continued presence of BFA, we found that the detyrosinated MTs reformed in a compact juxtanuclear location in the absence of an intact Golgi complex. Finally, we found that the detyrosinated MTs colocalized precisely with a BFA-resistant structure that binds to the lectin, wheat germ agglutinin. We conclude that the juxtanuclear detyrosinated MTs are not actively stabilized by association with BFA-sensitive Golgi membranes. However, another closely associated structure which binds wheat germ agglutinin may serve to stabilize the juxtanuclear MTs. Alternatively, the MT organizing center (MTOC) and/or MT-associated proteins (MAPs) may organize and stabilize the juxtanuclear detyrosinated MTs.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...