Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 31 (1927), S. 1511-1520 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 405 (2000), S. 544-546 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] It is a long-standing puzzle that the Sun's photosphere—its visible surface—rotates differentially, with the equatorial regions rotating faster than the poles. It has been suggested that waves analogous to terrestrial Rossby waves, and known as r-mode oscillations, could explain the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 392 (1998), S. 155-157 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The origin of the 11- and 22-year solar cycles remains one of the more mysterious aspects of the Sun. These cycles are probably driven by convection in the solar interior, but the convection zone is difficult to probe. Small departures from sphericity in the effective surface temperature of the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The medium-l program of the Michelson Doppler Imager instrument on board SOHO provides continuous observations of oscillation modes of angular degree, l, from 0 to ∽ 300. The data for the program are partly processed on board because only about 3% of MDI observations can be transmitted continuously to the ground. The on-board data processing, the main component of which is Gaussian-weighted binning, has been optimized to reduce the negative influence of spatial aliasing of the high-degree oscillation modes. The data processing is completed in a data analysis pipeline at the SOI Stanford Support Center to determine the mean multiplet frequencies and splitting coefficients. The initial results show that the noise in the medium-l oscillation power spectrum is substantially lower than in ground-based measurements. This enables us to detect lower amplitude modes and, thus, to extend the range of measured mode frequencies. This is important for inferring the Sun's internal structure and rotation. The MDI observations also reveal the asymmetry of oscillation spectral lines. The line asymmetries agree with the theory of mode excitation by acoustic sources localized in the upper convective boundary layer. The sound-speed profile inferred from the mean frequencies gives evidence for a sharp variation at the edge of the energy-generating core. The results also confirm the previous finding by the GONG (Gough et al., 1996) that, in a thin layer just beneath the convection zone, helium appears to be less abundant than predicted by theory. Inverting the multiplet frequency splittings from MDI, we detect significant rotational shear in this thin layer. This layer is likely to be the place where the solar dynamo operates. In order to understand how the Sun works, it is extremely important to observe the evolution of this transition layer throughout the 11-year activity cycle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The Solar Oscillations Investigation (SOI) uses the Michelson Doppler Imager (MDI) instrument to probe the interior of the Sun by measuring the photospheric manifestations of solar oscillations. Characteristics of the modes reveal the static and dynamic properties of the convection zone and core. Knowledge of these properties will improve our understanding of the solar cycle and of stellar evolution. Other photospheric observations will contribute to our knowledge of the solar magnetic field and surface motions. The investigation consists of coordinated efforts by several teams pursuing specific scientific objectives. The instrument images the Sun on a 10242 CCD camera through a series of increasingly narrow spectral filters. The final elements, a pair of tunable Michelson interferometers, enable MDI to record filtergrams with a FWHM bandwidth of 94 mÅ. Normally 20 images centered at 5 wavelengths near the Ni I 6768 spectral line are recorded each minute. MDI calculates velocity and continuum intensity from the filtergrams with a resolution of 4″ over the whole disk. An extensive calibration program has verified the end-to-end performance of the instrument. To provide continuous observations of the longest-lived modes that reveal the internal structure of the Sun, a carefully-selected set of spatial averages are computed and downlinked at all times. About half the time MDI will also be able to downlink complete velocity and intensity images each minute. This high rate telemetry (HRT) coverage is available for at least a continuous 60-day interval each year and for 8 hours each day during the rest of the year. During the 8-hour HRT intervals, 10 of the exposures each minute can be programmed for other observations, such as measurements in MDI's higher resolution (1.25″) field centered about 160″ north of the equator; meanwhile, the continuous structure program proceeds during the other half minute. Several times each day, polarizers will be inserted to measure the line-of-sight magnetic field. MDI operations will be scheduled well in advance and will vary only during the daily 8-hour campaigns. Quick-look and summary data, including magnetograms, will be processed immediately. Most high-rate data will be delivered only by mail to the SOI Science Support Center (SSSC) at Stanford, where a processing pipeline will produce 3 Terabytes of calibrated data products each year. These data products will be analyzed using the SSSC and the distributed resources of the co-investigators. The data will be available for collaborative investigations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract In time-distance helioseismology, the travel time of acoustic waves is measured between various points on the solar surface. To some approximation, the waves can be considered to follow ray paths that depend only on a mean solar model, with the curvature of the ray paths being caused by the increasing sound speed with depth below the surface. The travel time is affected by various inhomogeneities along the ray path, including flows, temperature inhomogeneities, and magnetic fields. By measuring a large number of times between different locations and using an inversion method, it is possible to construct 3-dimensional maps of the subsurface inhomogeneities. The SOI/MDI experiment on SOHO has several unique capabilities for time-distance helioseismology. The great stability of the images observed without benefit of an intervening atmosphere is quite striking. It has made it possible for us to detect the travel time for separations of points as small as 2.4 Mm in the high-resolution mode of MDI (0.6 arc sec pixel-1). This has enabled the detection of the supergranulation flow. Coupled with the inversion technique, we can now study the 3-dimensional evolution of the flows near the solar surface.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...