Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 36 (2005), S. 643-689 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Oysters have been introduced worldwide to 73 countries, but the ecological consequences of the introductions are not fully understood. Economically, introduced oysters compose a majority of oyster harvests in many areas. Oysters are ecosystem engineers that influence many ecological processes, such as maintenance of biodiversity, population and food web dynamics, and nutrient cycling. Consequently, both their loss, through interaction of overharvest, habitat degradation, disease, poor water quality, and detrimental species interactions, and their gain, through introductions, can cause complex changes in coastal ecosystems. Introductions can greatly enhance oyster population abundance and production, as well as populations of associated native species. However, introduced oysters are also vectors for non-native species, including disease-causing organisms. Thus, substantial population, community, and habitat changes have accompanied new oysters. In contrast, ecosystem-level consequences of oyster introductions, such as impacts on flow patterns, sediment and nutrient dynamics, and native bioengineering species, are not well understood. Ecological risk assessments for future introductions must emphasize probabilities of establishment, spread, and impacts on vulnerable species, communities, and ecosystem properties. Many characteristics of oysters lead to predictions that they would be successful, high-impact members of recipient ecosystems. This conclusion leaves open the discussion of whether such impacts are desirable in terms of restoration of coastal ecosystems, especially where restoration of native oysters is possible.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biological invasions 1 (1999), S. 339-352 
    ISSN: 1573-1464
    Keywords: aquaculture ; Batillaria ; coexistence ; competitive exclusion ; conservation ; Cerithidea ; Crassostrea gigas ; displacement ; exploitative competition ; grazers ; impact ; introduced species ; invasions ; non-indigenous species
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The estuarine mud snail, Batillaria attramentaria, was transported to the Pacific coast of North America with the Pacific oyster, Crassostrea gigas (C. gigas), imported from Japan in the early part of this century, and has proliferated in several bays where the oyster was introduced. Since the arrival of Batillaria there have been declines in populations of its native ecological equivalent, Cerithidea californica. This study documents the distribution of the exotic Batillaria throughout its entire introduced range, concentrating on the few bays in northern California where both snails exist sympatrically. Using dates of initial importation of C. gigas and dates of first documentation of Batillaria within a bay, I established the earliest possible date for the introduction of Batillaria in a particular area. In cases where Cerithidea also was, or had been, present within a bay, I calculated a range of time for either the continued coexistence of the two species or the time until local exclusion of the native. Density measurements of Cerithidea within these bays where the species co-occurred allowed comparison of present Cerithidea numbers to historical accounts. Results indicated that Batillaria is replacing Cerithidea in the northern marshes of California. This replacement of the northernmost Cerithidea populations is not only reducing Cerithidea's overall range, but also eliminating a race recently shown to be a genetically distinct from southern Cerithidea populations. Other studies that have demonstrated superior exploitative competitive ability by Batillaria provide a potential mechanism for this displacement pattern. Regardless, the results presented here indicate that the displacement process is slow, taking on average 〉50 years to complete. This study illustrates a gradual, but predictable process of exotic replacement of native species, and argues strongly against complacency toward invaders that may currently seem innocuous.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...