Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Langmuir 10 (1994), S. 3874-3879 
    ISSN: 1520-5827
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 101 (1994), S. 2606-2615 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The friction of dry self-assembled monolayers, chemically attached to a solid surface and comprising a well-defined interface for sliding, is compared to the case of two solids separated by an ultrathin confined liquid. The monolayers were condensed octadecyltriethoxysilane (OTE). The liquid was squalane (C30H62), a film 2.0 nm thick confined between parallel plates of mica. The method of measurement was a surface forces apparatus, modified for oscillatory shear. The principal observations were the same in both cases: (1) Predominantly elastic behavior in the linear response state was followed by a discontinuous transition to a mostly dissipative state at larger deformations. The elastic energy stored at the transition was low, of the order of 0.1 kT per molecule. This transition was exactly repeatable in repetitive cycles of oscillation and reversible with pronounced hysteresis. (2) The dissipative stress in the sliding state was almost independent of peak sliding velocity when this was changed over several decades. Significant (although smaller) elastic stress also persisted, which decreased with increasing deflection amplitude but was almost independent of oscillation frequency. (3) The adhesive energy in the sliding state was significantly reduced from that measured at rest. This similarity of friction in the two systems, dry and wet sliding, leads us to speculate that, similar to plastic deformation of solids, sliding in the confined liquid films is the result of slippage along an interface.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-2711
    Keywords: static friction ; surface force apparatus ; confined liquid lubricant ; history-dependent shear response ; deformation threshold
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract We studied the shear response of a confined lubricant layer on approach of the transition to sliding with a surface force apparatus modified for oscillatory shear. In a given experiment, we found that the transition to sliding occurred always around the same deformation amplitude although the shear stress needed to initiate sliding varied up to a factor of two depending on sample history. This suggests the concept of deformation-controlled switching from rest to sliding. The elastic spring-constant, in the stick state, weakened with increasing deformation amplitude. This decrease can be described by a power law when plotted versus the distance to a critical deformation amplitude. The build-up of solid-like behavior after sliding stopped was also gradual and was consistent with a logarithmic time dependence. We suggest a model relating the gradual decrease of stiffness to weakening of the boundary layer, specifically to destruction of some elastic links between molecules or between molecules and the solid surfaces. Static friction (the force that must be overcome at the onset of kinetic motion) is proportional to the number of such links formed during the time of stick.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...