Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 50 (1999), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The sound management of agricultural soils that are heavily loaded with phosphorus (P) involves minimizing the losses of P responsible for eutrophication of surface waters, while ensuring enough P for crops. This paper describes a simple model to examine the compatibility of these two objectives in acid sandy soils in a temperate humid climate. The model is based on several assumptions regarding reversible and irreversible P sorption by P-reactive soil compounds (mainly poorly crystalline Fe and Al oxides) and release of P to water (water-P test). Model inputs are amount of P leached, P uptake by crops, and contents of poorly crystalline Fe and Al oxides in soil. The model predicts that reducing the amount of leached P to what is environmentally acceptable (e.g. 0.44 kg P ha–1 year–1, equivalent to 1 kg P2O5 ha–1 year–1) results in the long run in available soil P test values below target concentrations for optimum crop growth. When the amount of leached P is set to a fixed value the model predicts that soils with large contents of Fe and Al oxides can maintain the initial soil P test values for longer periods than other soils. The content in available P decreases if fertilizer P is applied to the soil at a rate equal to P uptake by crops. These results stress the difficulties involved in trying to make agricultural and environmental needs compatible in acid sandy soils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 31 (1992), S. 61-67 
    ISSN: 1573-0867
    Keywords: Iron phosphate ; Fe amendment ; Fe deficiency ; chlorophyll content ; Cicer arietinum L. ; chickpea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract For various reasons, iron phosphate might be effective in correcting Fe chlorosis in calcareous soils. To test this hypothesis, several pot experiments were conducted using an Fe chlorosis-sensitive chickpea (Cicer arietinum L.) cultivar cropped in soils to which partially oxidized vivianites (Fe3(PO4)2.8H2O) and Fe(III) phosphates with different characteristics had been added. Vivianites mixed with the soil at a rate of 1 g kg−1 were as effective in preventing chlorosis as Fe chelate (FeEDDHA). However, the effectiveness of Fe(III) phosphates was less, suggesting that the presence of Fe(II) in the phosphates used was a key factor in their Fe-supplying value to plants. The effectiveness of vivianites, however, seemed to be largely independent of their Fe(II) content. The future of vivianite as a Fe amendment will depend not only on economic considerations (production and application costs) but also on its long-term capacity to release plant-available Fe in soil environments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...