Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Adenosine A1 receptors (A1Rs) and adenosine A2A receptors (A2ARs) are the major mediators of the neuromodulatory actions of adenosine in the brain. In the striatum A1Rs and A2ARs are mainly co-localized in the GABAergic striatopallidal neurons. In this paper we show that agonist-induced stimulation of A1Rs and A2ARs induces neurite outgrowth processes in the human neuroblastoma cell line SH-SY5Y and also in primary cultures of striatal neuronal precursor cells. The kinetics of adenosine-mediated neuritogenesis was faster than that triggered by retinoic acid. The triggering of the expression of TrkB neurotrophin receptor and the increase of cell number in the G1 phase by the activation of adenosine receptors suggest that adenosine may participate in early steps of neuronal differentiation. Furthermore, protein kinase C (PKC) and extracellular regulated kinase-1/2 (ERK-1/2) are involved in the A1R- and A2AR-mediated effects. Inhibition of protein kinase A (PKA) activity results in a total inhibition of neurite outgrowth induced by A2AR agonists but not by A1R agonists. PKA activation is therefore necessary for A2AR-mediated neuritogenesis. Co-stimulation does not lead to synergistic effects thus indicating that the neuritogenic effects of adenosine are mediated by either A1 or A2A receptors depending upon the concentration of the nucleoside. These results are relevant to understand the mechanisms by which adenosine receptors modulate neuronal differentiation and open new perspectives for considering the use of adenosine agonists as therapeutic agents in diseases requiring neuronal repair.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The results presented in this paper show that adenosine A2A receptor (A2AR) form homodimers and that homodimers but not monomers are the functional species at the cell surface. Fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) techniques have been used to demonstrate in transfected HEK293 cells homodimerization of A2AR, which are heptaspanning membrane receptors with enriched expression in striatum. The existence of homodimers at the cell surface was demonstrated by time-resolved FRET. Although agonist activation of the receptor leads to the formation of receptor clusters, it did not affect the degree of A2AR–A2AR dimerization. Both monomers and dimers were detected by immunoblotting in cell extracts. However, cell surface biotinylation of proteins has made evident that more than 90% of the cell surface receptor is in its dimeric form. Thus, it seems that homodimers are the functional form of the receptor present on the plasma membrane. A deletion mutant version of the A2A receptor, lacking its C-terminal domain, was also able to form both monomeric and dimeric species when cell extracts from transfected cells were analyzed by immunoblotting. This suggests that the C-terminal tail does not participate in the dimerization. This is relevant as the C-terminal tail of A2AR is involved in heteromers formed by A2AR and dopamine D2 receptors. BRET ratios corresponding to A2AR–A2AR homodimers were higher than those encountered for heterodimers formed by A2AR and dopamine D2 receptors. As A2AR and dopamine D2 receptors do indeed interact, these results indicate that A2AR homodimers are the functional species at the cell surface and that they coexist with A2AR/D2 receptor heterodimers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...