Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Key words  Clethrionomys glareolus ; Humoral immune response ; Population density ; Reproduction ; Sexual dimorphism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Density dependence is a common feature in the dynamics of animal populations. Availability of food resources critical to immunity is likely to be one of the mechanisms mediating the effect of population density on individual fitness. The ability to mount an immune response to an antigen is also affected by levels of immunosuppressive hormones associated with reproduction or mediating the response to ecological and social stress. We assessed variation in condition and intensity of humoral immune response to a T-cell-dependent antigen in bank voles (Clethrionomys glareolus) by experimentally altering population density before immunisation. Consistent with our prediction, males had lower humoral immunocompetence in the breeding than in the non-breeding season. Contrary to our expectation, males did not show enhanced immunocompetence and females showed depressed humoral immune response under experimentally lowered population density. Variation of immune response in relation to population density depended on sex, with females but not males showing lower immune response under experimentally reduced density. We conclude that humoral immunity of bank voles was affected by reproduction and social environment rather than by population density.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 749-761 
    ISSN: 0887-6266
    Keywords: polycarbonate ; polyglutanimide ; polymer blends ; copolymer ; compatibilization ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Imide units copolymerized with MMA units have been selected in order to improve compatibility between PC and acrylics through specific interaction or internal repulsion. Good dispersion of acrylic inside a PC matrix has been observed upon melt mixing, which can be partially explained by the good rheological agreement between these two polymers. Transmission electron microscopy has shown that the system remains phase separated from 5 to 95 wt % of PC. Phase diagrams for three different imide concentrations have been drawn. Results obtained by DSC (conventional and with enthalpy relaxation) are similar to those obtained by optical cloud point detection. The phase diagrams show the raise of the PC/PMMA demixtion curve (LCST type) when percentage of imide increases in the acrylic phase. Theoretical calculations on binary interaction energy density show a slight improvement of the interaction between acrylic and PC when imide percentage increases. Cloud point measurements on 50/50 PC/acrylic blends varying the imide concentration show that the improvement of compatibility deduced from the raise of the demixtion curve (LCST type) is more related to a kinetic effect (the high Tg of imidized samples is reducing macromolecule mobility) than specific interactions. The calculated favorable interactions are probably too weak to be detected with cloud point measurements. The microstructures obtained after crystallization of the PC phase under solvent vapors in phase separated PC/acrylics blends can also be explained by Tg effects. Moreover, solvent vapor exposure could be a powerful tool to determine the real thermodynamic behavior of the blends at room temperature. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 749-761, 1997
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...