Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 352 (1995), S. 304-307 
    ISSN: 1432-1912
    Keywords: Key words Tripitramine ; Polymethylene tetraamines ; In vivo M2 selectivity ; Muscarinic receptor subtypes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The antimuscarinic effects of tripitramine (1, 1, 24--tris[[5, 11-dihydro-6-oxo-6H-pyrido[2, 3-b][1, 4]-benzodiazepin-11-yl)carbonyl]methyl]-8, 17-dimethyl-1, 8, 17, 24-tetraazatetracosane tetraoxalate), a member of a series of polymethylene tetraamines with in vitro cardioselectivity, were assessed in two in vivo preparations: anaesthetized and pithed rats. The well-known M2 selective antagonist methoctramine was used in a comparative study. Tripitramine (0.0202 μmol/kg i.v.) proved to be a potent antagonist at cardiac M2 receptors that mediate the decrease in heart rate in the pithed rat; the same dose of this antagonist in the anaesthetized rat did not significantly affect the depressor action of methacholine mediated by vascular M3 receptors. In the pithed rat, this dose did not affect the ganglionic M1 receptor-mediated tachycardia and pressor response to muscarine or McN-A-343. These in vivo data are consistent with the in vitro findings and confirm that tripitramine is a more potent and selective muscarinic M2 receptor antagonist than methoctramine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 352 (1995), S. 304-307 
    ISSN: 1432-1912
    Keywords: Tripitramine ; Polymethylene tetraamines ; in vivo M2 selectivity ; Muscarinic receptor subtypes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The antimuscarinic effects of tripitramine (1, 1, 24--tris [[5, 11-dihydro-6-oxo-6H-pyrido [2, 3-b][1, 4]-benzodiazepin-11-yl)(carbonyl] methyl]-8, 17-dimethyl-1, 8, 17, 24-tetraazatetracosane tetraoxalate), a member of a series of polymethylene tetraamines with in vitro cardioselectivity, were assessed in two in vivo preparations: anaesthetized and pithed rats. The well-known M2 selective antagonist methoctramine was used in a comparative study. Tripitramine (0.0202 μmol/kg i.v.) proved to be a potent antagonist at cardiac M2 receptors that mediate the decrease in heart rate in the pithed rat; the same dose of this antagonist in the anaesthetized rat did not significantly affect the depressor action of methacholine mediated by vascular M3 receptors. In the pithed rat, this dose did not affect the ganglionic M1 receptor-mediated tachycardia and pressor response to muscarme or McN-A-343. These in vivo data are consistent with the in vitro findings and confirm that tripitramine is a more potent and selective muscarinic M2 receptor antagonist than methoctramine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of toxicology 67 (1993), S. 510-513 
    ISSN: 1432-0738
    Keywords: Pyrethroids ; Acute toxicity ; Drug metabolism inhibitors ; Neonatal ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The present study aims specifically at obtaining a comparison of the acute toxicity of cypermethrin (CY), a type I pyrethroid, and permethrin (PERM), a type II pyrethroid, administered orally as a single dose to neonatal and adult rats, and at assessing the importance of pyrethroid biotransformation in CY and PERM toxicity through use of drug metabolism inhibitors. Our experiments show that CY is more toxic than PERM to adult and neonatal rats. The sensitivity of neonatal rats both to CY and to PERM toxicity is higher, the younger the animals. CY is much more toxic than PERM in the neonatal rat, compared with the adult. In rats aged 8, 16, and 21 days, pretreatment with piperonil butoxide (PB), a monooxygenase inhibitor, or with tri-o-tolyl phosphate (TOTP), an esterase inhibitor, does not produce significant variations in the lethal effects of CY and PERM. Instead, in the adult rats, a significant increase in CY (X2=5.97;p〈0.05) and PERM (X2=4.37;p〈0.05) mortality occurred in rats pretreated with esterase inhibitors, whereas no increase in CY and PERM toxicity was found in adult animals pretreated with monooxygenase inhibitor. It was concluded that the higher level of sensitivity of the neonate rat to pyrethroid toxicity is probably due to incomplete development of the enzymes which catalyze the metabolism of pyrethroids in the liver of young animals. It is suggested that ester hydrolysis is an important pyrethroids detoxification reaction in the adult rat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...