Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 2766-2775 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This paper presents a mathematically complete derivation of the minimum-energy divergence-free vector fields of fixed helicity, defined on and tangent to the boundary of solid balls and spherical shells. These fields satisfy the equation ∇×V=λV, where λ is the eigenvalue of curl having smallest nonzero absolute value among such fields. It is shown that on the ball the energy minimizers are the axially symmetric spheromak fields found by Woltjer and Chandrasekhar–Kendall, and on spherical shells they are spheromak-like fields. The geometry and topology of these minimum-energy fields, as well as of some higher-energy eigenfields, are illustrated. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 41 (2000), S. 5615-5641 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: The helicity of a smooth vector field defined on a domain in three-space is the standard measure of the extent to which the field lines wrap and coil around one another. It plays important roles in fluid mechanics, magnetohydrodynamics, and plasma physics. The isoperimetric problem in this setting is to maximize helicity among all divergence-free vector fields of given energy, defined on and tangent to the boundary of all domains of given volume in three-space. The Biot–Savart operator starts with a divergence-free vector field defined on and tangent to the boundary of a domain in three-space, regards it as a distribution of electric current, and computes its magnetic field. Restricting the magnetic field to the given domain, we modify it by subtracting a gradient vector field so as to keep it divergence-free while making it tangent to the boundary of the domain. The resulting operator, when extended to the L2 completion of this family of vector fields, is compact and self-adjoint, and thus has a largest eigenvalue, whose corresponding eigenfields are smooth by elliptic regularity. The isoperimetric problem for this modified Biot–Savart operator is to maximize its largest eigenvalue among all domains of given volume in three-space. The curl operator, when restricted to the image of the modified Biot–Savart operator, is its inverse, and the isoperimetric problem for this restriction of the curl is to minimize its smallest positive eigenvalue among all domains of given volume in three-space. These three isoperimetric problems are equivalent to one another. In this paper, we will derive the first variation formulas appropriate to these problems, and use them to constrain the nature of any possible solution. For example, suppose that the vector field V, defined on the compact, smoothly bounded domain Ω, maximizes helicity among all divergence-free vector fields of given nonzero energy, defined on and tangent to the boundary of all such domains of given volume. We will show that (1) |V| is a nonzero constant on the boundary of each component of Ω; (2) all the components of ∂Ω are tori; and (3) the orbits of V are geodesics on ∂Ω. Thus, among smooth simply connected domains, none are optimal in the above sense. In principal, one could have a smooth optimal domain in the shape, say, of a solid torus. However, we believe that there are no smooth optimal domains at all, regardless of topological type, and that the true optimizer looks like the singular domain presented in this paper, which we can think of either as an extreme apple, in which the north and south poles have been pressed together, or as an extreme solid torus, in which the hole has been shrunk to a point. A computational search for this singular optimal domain and the helicity-maximizing vector field on it is at present under way, guided by the first variation formulas in this paper. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 42 (2001), S. 876-905 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: The writhing number of a curve in 3-space is the standard measure of the extent to which the curve wraps and coils around itself; it has proved its importance for molecular biologists in the study of knotted DNA and of the enzymes which affect it. The helicity of a vector field defined on a domain in 3-space is the standard measure of the extent to which the field lines wrap and coil around one another; it plays important roles in fluid dynamics and plasma physics. The Biot–Savart operator associates with each current distribution on a given domain the restriction of its magnetic field to that domain. When the domain is simply connected, the divergence-free fields which are tangent to the boundary and which minimize energy for given helicity provide models for stable force-free magnetic fields in space and laboratory plasmas; these fields appear mathematically as the extreme eigenfields for an appropriate modification of the Biot–Savart operator. Information about these fields can be converted into bounds on the writhing number of a given piece of DNA. The purpose of this paper is to reveal new properties of the Biot–Savart operator which are useful in these applications. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 392 (1998), S. 237-238 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Applications of knots to the study of polymers have emphasized geometric measures on curves such as ‘energy’ and ‘rope length’, which, when minimized over different configurations of a knot, give computable knot invariants related to physical quantities. In DNA knots, ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...