Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 31 (1991), S. 1279-1285 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: This paper presents the influence of fibers on crystallization kinetics and on matrix morphology for poly(phenylene sulfide)/carbon composite. The following parameters were also considered: thermal stability, fusion/crystallization conditions and surface treatment of carbon fibers. In order to correlate these results with mechanical properties, composite samples were prepared and tested in both static and dynamic modes. The delamination resistance of the composite in shear Mode II is also discussed.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 9 (1998), S. 173-179 
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Four institutes from three countries in the European Union have collaborated under the BRITE–EURAM framework programme for the development of processing technologies for resorbable osteosynthesis devices. The devices should be continuous-fibre reinforced, and the technology should offer the possibility of orienting the fibres in the main trajectories. Poly-L-lactide and poly-L–DL-lactides have been synthesized for reinforcement fibres and matrix material, respectively. Melt-spun P-L-LA fibres of a strength of 800 MPa have been embedded in an amorphous P-L–DL-LA 70 : 30 matrix by compression moulding. Ethyleneoxide sterilized samples have been tested in vitro and in vivo. A satisfying bending modulus has been reached (6 GPa). Yet with 50% strength retention after ten weeks, fast degradation occurred that could be related to residual monomers. By this fast degradation 70% resorption after one year could be observed in the non-functional animal studies in rabbits. There was only a mild inflammatory reaction, which confirmed the good biocompatibility of the materials even during the resorption period. Further effort has to concentrate on the reduction of initial monomer content. The great advantage of the processing method to orient fibres in the device will be utilized in prototype samples, e.g. an osteosynthesis plate with fixation holes. © 1998 Chapman & Hall
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...