Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 19 (1993), S. 578-583 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract The heat capacity of synthetic hydrous cordierite (Mg2Al4Si5O18·nH2O) has been determined by differential scanning calorimetry (DSC) from 295 to 425 K as a function of H2O content. Six samples with H2O contents ranging from 0 to 0.82 per formula unit were examined. The partial molar heat capacity of H2O in cordierite over the measured temperature interval is independent of composition and temperature within experimental uncertainty and is equal to 43.3 ±0.8 J/mol/ K. This value exceeds the molar heat capacity of gaseous H2O by 9.7 J/mol/K, but is significantly smaller than the heat capacity of H2O in several zeolites and liquid H2O. A statistical-mechanical model of the heat capacity of adsorbed gas species (Barrer 1978) is used to extrapolate the heat capacity of hydrous cordierite to temperatures greater than 425 K. In this model, the heat capacity of hydrous cordierite (Crd·nH2O) is represented as follows: Cp(Crd · nH2O) = Cp(Crd)+ n{Cp(H2O, gas)+ R(gas constant)} (1) An examination of calorimetric data for hydrous beryl, analcime, mordenite, and clinoptilolite (Hemingway et al. 1986; Johnson et al. 1982, 1991, 1992) demonstrates the general applicability of the statistical-mechanical model for the extrapolation of heat capacity data of zeolitic minerals. The heat capacity data for cordierite are combined with the data of Carey and Navrotsky (1992) to obtain the molar enthalpy of formation and enthalpy of hydration of hydrous cordierite as a function of temperature.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 119 (1995), S. 155-165 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  A thermodynamic formulation of hydrous Mg-cordierite (Mg2Al4Si5O18⋅nH2O) has been obtained by application of calorimetric and X-ray diffraction data for hydrous cordierite to the results of hydrothermal syntheses. The data include measurements of the molar heat capacity and enthalpy of hydration and the molar volume. The synthesis data are consistent with a thermodynamic formulation in which H2O mixes ideally on a single crystallographic site in hydrous cordierite. The standard molar Gibbs free energy of hydration is −9.5±1.0 kJ/mol (an average of 61 syntheses). The standard molar entropy of hydration derived from this value is −108±3 J/mol-K. An equation providing the H2O content of cordierite as a function of temperature and fugacity of H2O is as follows (n moles of H2O per formula unit, n〈1): n=f  V H2 O/(f V H2 O+exp[−3.8389−5025.2(1T−1298.15) −ln(T298.15)−(298.15T−1)] ) Application of this formulation to the breakdown reaction of Mg-cordierite to an assemblage of pyrope-sillimanite-quartz±H2O shows that cordierite is stabilized by 3 to 3.5 kbar under H2O-saturated conditions. The thermodynamic properties of H2O in cordierite are similar to those of liquid water, with a standard molar enthalpy and Gibbs free energy of hydration that are the same (within experimental uncertainty) as the enthalpy and Gibbs free energy of vaporization. By contrast, most zeolites have Gibbs free energies of hydration two to four times more negative than the corresponding value for the vaporization of water.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 119 (1995), S. 155-165 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A thermodynamic formulation of hydrous Mg-cordierite (Mg2Al4Si5O18·nH2O) has been obtained by application of calorimetric and X-ray diffraction data for hydrous cordierite to the results of hydrothermal syntheses. The data include measurements of the molar heat capacity and enthalpy of hydration and the molar volume. The synthesis data are consistent with a thermodynamic formulation in which H2O mixes ideally on a single crystallographic site in hydrous cordierite. The standard molar Gibbs free energy of hydration is-9.5±1.0 kJ/mol (an average of 61 syntheses). The standard molar entropy of hydration derived from this value is-108±3 J/mol-K. An equation providing the H2O content of cordierite as a function of temperature and fugacity of H2O is as follows (n moles of H2O per formula unit, n〈1): $$\begin{gathered}n = {{f_{{\text{ H}}_{\text{2}} O}^{\text{V}} } \mathord{\left/{\vphantom {{f_{{\text{ H}}_{\text{2}} O}^{\text{V}} } {\left( {f_{{\text{ H}}_{\text{2}} O}^{\text{V}} + {\text{exp}}\left[ { - {\text{3}}{\text{.8389}} - 5025.2\left( {\frac{1}{T} - \frac{1}{{298.15}}} \right)} \right.} \right.}}} \right.\kern-\nulldelimiterspace} {\left( {f_{{\text{ H}}_{\text{2}} O}^{\text{V}} + {\text{exp}}\left[ { - {\text{3}}{\text{.8389}} - 5025.2\left( {\frac{1}{T} - \frac{1}{{298.15}}} \right)} \right.} \right.}} \hfill \\{\text{ }}\left. {\left. { - {\text{ln}}\left( {\frac{T}{{{\text{298}}{\text{.15}}}}} \right) - \left( {\frac{{298.15}}{T} - 1} \right)} \right]} \right) \hfill \\\end{gathered}$$ Application of this formulation to the breakdown reaction of Mg-cordierite to an assemblage of pyrope-sillimanite-quartz±H2O shows that cordierite is stabilized by 3 to 3.5 kbar under H2O-saturated conditions. The thermodynamic properties of H2O in cordierite are similar to those of liquid water, with a standard molar enthalpy and Gibbs free energy of hydration that are the same (within experimental uncertainty) as the enthalpy and Gibbs free energy of vaporization. By contrast, most zeolites have Gibbs free energies of hydration two to four times more negative than the corresponding value for the vaporization of water.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...