Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Sedimentology 46 (1999), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The behaviour of subaerial particle-laden gravity currents (e.g. pyroclastic flows, lahars, debris flows, sediment-bearing floods and jökulhlaups) flowing into the sea has been simulated with analogue experiments. Flows of either saline solution, simple suspensions of silicon carbide (SiC) in water or complex suspensions of SiC and plastic particles in methanol were released down a slope into a tank of water. The excess momentum between subaerial and subaqueous flow is dissipated by a surface wave. At relatively low density contrasts between the tank water and the saline or simple suspensions, the flow mixture enters the water and forms a turbulent cloud involving extensive entrainment of water. The cloud then collapses gravitationally to form an underwater gravity current, which progresses along the tank floor. At higher density contrasts, the subaerial flow develops directly into a subaqueous flow. The flow slows and thickens in response to the reduced density contrast, which is driving motion, and then continues in the typical gravity current manner. Complex suspensions become dense flows along the tank floor or buoyant flows along the water surface, if the mixtures are sufficiently denser or lighter than water respectively. Flows of initially intermediate density are strongly influenced by the internal stratification of the subaerial flow. Material from the particulate-depleted upper sections of the subaerial flow becomes a buoyant gravity current along the water surface, whereas material from the particulate-enriched lower sections forms a dense flow along the tank floor. Sedimentation from the dense flow results in a reduction in bulk density until the mixture attains buoyancy, lifts off and becomes a secondary buoyant flow along the water surface. Jökulhlaups, lahars and debris flows are typically much denser than seawater and, thus, will usually form dense flows along the seabed. After sufficient sedimentation, the freshwater particulate mixture can lift off to form a buoyant flow at the sea surface, leading to a decoupling of the fine and coarse particles. Flood waters with low particulate concentrations (〈2%) may form buoyant flows immediately upon entering the ocean. Subaerial pyroclastic flows develop a pronounced internal stratification during subaerial run-out and, thus, a flow-splitting behaviour is probable, which agrees with evidence for sea surface and underwater flows from historic eruptions of Krakatau and Mont Pelée. A pyroclastic flow with a bulk density closer to that of sea water may form a turbulent cloud, resulting in the deposition of much of the pyroclasts close to the shore. Dense subaqueous pyroclastic flows will eventually lift off and form secondary buoyant flows, either before or after the transformation to a water-supported nature.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0819
    Keywords: Key words Krakatau ; Pyroclastic flows ; Pyroclastic surge ; Tsunamis ; Volcanic hazard ; Explosive eruption
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Pyroclastic deposits from the 1883 eruption of Krakatau are described from areas northeast of the volcano on the islands of Sebesi, Sebuku, and Lagoendi, and the southeast coast of Sumatra. Massive and poorly stratified units formed predominantly from pyroclastic flows and surges that traveled over the sea for distances up to 80 km. Granulometric and lithologic characteristics of the deposits indicate that they represent the complement of proximal subaerial and submarine pyroclastic flow deposits laid down on and close to the Krakatau islands. The distal deposits exhibit a decrease in sorting coefficient, median grain size, and thickness with increasing distance from Krakatau. Crystal fractionation is consistent with the distal facies being derived from the upper part of gravitationally segregated pyroclastic flows in which the relative amount of crystal enrichment and abundance of dense lithic clasts diminished upwards. The deposits are correlated to a major pyroclastic flow phase that occurred on the morning of 27 August at approximately 10 a.m. Energetic flows spread out away from the volcano at speeds in excess of 100 km/h and traveled up to 80 km from source. The flows retained temperatures high enough to burn victims on the SW coast of Sumatra. Historical accounts from ships in the Sunda Straits constrain the area affected by the flows to a minimum of 4×103 km2. At the distal edge of this area the flows were relatively dilute and turbulent, yet carried enough material to deposit several tens of centimeters of tephra. The great mobility of the Krakatau flows from the 10 a.m. activity may be the result of enhanced runout over the sea. It is proposed that the generation of steam at the flow/seawater interface may have led to a reduction in the sedimentation of particles and consequently a delay in the time before the flows ceased lateral motion and became buoyantly convective. The buoyant distal edge of these ash- and steam-laden clouds lifted off into the atmosphere, leading to cooling, condensation, and mud rain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 51 (1989), S. 243-270 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A study of pyroclastic deposits from the 1815 Tambora eruption reveals two distinct phases of activity, i.e., four initial tephra falls followed by generation of pyroclastic flows and the production of major co-ignimbrite ash fall. The first explosive event produced minor ash fall from phreatomagmatic explosions (F-1 layer). The second event was a Plinian eruption (F-2) correlated to the large explosion of 5 April 1815, which produced a column height of 33 km with an eruption rate of 1.1 × 108 kg/s. The third event occurred during the lull in major activity from 5 to 10 April and produced minor ash fall (F-3). The fourth event produced a 43-km-high Plinian eruption column with an eruption rate of 2.8 × 108 kg/s during the climax of activity on 10 April. Although very energetic, the Plinian events were of short duration (2.8 h each) and total erupted volume of the early (F-1 to F-4) fall deposits is only 1.8 km3 (DRE, dense rock equivalent). An abrupt change in style of activity occurred at end of the second Plinian event with onset of pyroclastic flow and surge generation. At least seven pyroclastic flows were generated, which spread over most of the volcano and Sanggar peninsula and entered the ocean. The volume of pyroclastic flow deposits on land is 2.6 km3 DRE. Coastal exposures show that pyroclastic flows entering the sea became highly fines depleted, resulting in mass loss of about 32%, in addition to 8% glass elutriation, as indicated by component fractionation. The subaqueous pyroclastic flows have thus lost about 40% of mass compared to the original erupted mixture. Pyroclastic flows and surges from this phase of the eruption are stratigraphically equivalent to a major ash fall deposit (F-5) present beyond the flow and surge zone at 40 km from the source and in distal areas. The F-5 fall deposit forms a larger proportion of the total tephra fall with increasing distance from source and represents about 80% of the total at a distance of 90 km and 92% of the total tephra fall from the 1815 eruption. The field relations indicate that the 20-km3 (DRE) F-5 deposit is a co-ignimbrite ash fall, generated largely during entrance of pyroclastic flows into the ocean. Based on the observed 40% fines depletion and component fractionation from the flows, the large volume of the F-5 co-ignimbrite ash requires eruption of 50 km3 (DRE, 1.4 × 1014 kg) pyroclastic flows.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 134 (1990), S. 485-507 
    ISSN: 1420-9136
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 57 (1996), S. 512-529 
    ISSN: 1432-0819
    Keywords: Key words Facies ; Grain size ; Components ; Pyroclastic flows ; Subaerial ; Emplacement process
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The majority of tephra generated during the paroxysmal 1883 eruption of Krakatau volcano, Indonesia, was deposited in the sea within a 15-km radius of the caldera. Two syneruptive pyroclastic facies have been recovered in SCUBA cores which sampled the 1883 subaqueous pyroclastic deposit. The most commonly recovered facies is a massive textured, poorly sorted mixture of pumice and lithic lapilli-to-block-sized fragments set in a silty to sandy ash matrix. This facies is indistinguishable from the 1883 subaerial pyroclastic flow deposits preserved on the Krakatau islands on the basis of grain size and component abundances. A less common facies consists of well-sorted, planar-laminated to low-angle cross-bedded, vitric-enriched silty ash. Entrance of subaerial pyroclastic flows into the sea resulted in subaqueous deposition of the massive facies primarily by deceleration and sinking of highly concentrated, deflated components of pyroclastic flows as they traveled over water. The basal component of the deposit suggests no mixing with seawater as inferred from retention of the fine ash fraction, high temperature of emplacement, and lack of traction structures, and no significant hydraulic sorting of components. The laminated facies was most likely deposited from low-concentration pyroclastic density currents generated by shear along the boundary between the submarine pyroclastic flows and seawater. The Krakatau deposits are the first well-documented example of true submarine pyroclastic flow deposition from a modern eruption, and thus constitute an important analog for the interpretation of ancient sequences where subaqueous deposition has been inferred based on the facies characteristics of encapsulating sedimentary sequences.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 51 (1989), S. 28-40 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Peak intensities (magma discharge rate) of 45 Pleistocene and Holocene plinian eruptions have been inferred from lithic dispersal patterns by using a theoretical model of pyroclast fallout from eruption columns. Values range over three orders of magnitude from 1.6 × 106 to 1.1 × 109 kg/s. Magnitudes (total erupted mass) also vary over about three orders of magnitude from 2.0 × 1011 to 6.8 × 1014 kg and include several large ignimbrite-forming events with associated caldera formation. Intensity is found to be positively correlated with the magnitude when total erupted mass (tephra fall, surges and pyroclastic flows) is considered. Initial plinian fall phases with intensities in excess of 2.0 × 108 kg/s typically herald the onset of major pyroclastic flow generation and subsequent caldera collapse. During eruptions of large magnitude, the transition to pyroclastic flows is likely to be the result of high intensity, whereas the generation of pyroclastic flows in small magnitude eruptions may occur more often by reduction of magmatic volatile content or some transient change in magma properties. The correlation between plinian fall intensity and total magnitude suggests that the rate of magma discharge is related to the size of the chamber being tapped. A simple model is presented to account for the variation in intensity by progressive enlargement of conduits and vents and excess pressure at the chamber roof caused by buoyant forces acting on the chamber as it resides in the crust. Both processes are fundamentally linked to the absolute size of the pre-eruption reservoir. The data suggest that sustained eruption column heights (i.e. magma discharge rates) are indicators of eventual eruption magnitude, and perhaps eruptive style, and thus are key parameters to monitor in order to assess the temporal evolution of plinian eruptions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Tephra fallout from the A-1 (March 29, 0532 UT), B (April 4, 0135 UT), and C (April 4, 1122 UT) 1982 explosive eruptions of El Chichon produced three tephra fall deposits over southeastern Mexico. Bidirectional spreading of eruption plumes, as documented by satellite images, was due to a combination of tropospheric and stratospheric transport, with heaviest deposition of tephra from the ENE tropospheric lobes. Maximum column heights for the eruptions of 27, 32, and 29 km, respectively, have been determined by comparing maximum lithic-clast dispersal in the deposits with predicted lithic isopleths based on a theoretical model of pyroclast fallout from eruption columns. These column heights suggest peak mass eruption rates of 1.1 × 108, 1.9 × 108, and 1.3 × 108 kg/s. Maximum column heights and mass eruption rates occured early in each event based on the normal size grading of the fall deposits. Sequential satellite images of plume transport and the production of a large stratospheric aerosol plume indicate that the eruption columns were sustained at stratospheric altitudes for a significant portion of their duration. New estimates of tephra fall volume based on integration of isopach area and thickness yield a total volume of 2.19 km3 (1.09 km3 DRE, dense rock equivalent) or roughly twice the amount of the deposit mapped on the ground. Up to one-half of the erupted mass was therefore deposited elsewhere as highly dispersed tephra.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...