Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 6 (1988), S. 0 
    ISSN: 1525-1314
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: Abstract Partial melting of tonalitic gneisses in the 2.7 Ga Badcallian granulite facies metamorphic episode in the Scourian complex of north-west Scotland produced a suite of granitic to trondhjemitic liquids. On cooling and excavation of the complex, these melts underwent fractional crystallization and the residual liquids eventually became water saturated. Comparison with experimental data suggests that water saturation would have occurred in these melts at around 620–700°C. From the retrograde P–T-time path followed by the complex it is estimated that H2O-dominated fluids were exsolved from these melts at c. 2.5 Ga. It is proposed that these fluids were the cause of the 2.5 Ga Inverian retrogression of the Scourian complex and that water-saturated melts formed during the crystallization of the leucogneisses were intruded as a suite of pegmatites. The timing of pegmatite intrusion is consistent with this proposition as are the temperature estimates, timing, distribution and nature of the Inverian phase of metamorphism. It is likely that the crystallization of melts is an important process in bringing about hydrous retrogressive metamorphic episodes in a number of other basement terrains, such as West Greenland and Australia.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: Abstract Granulite facies marbles from the Upper Calcsilicate Unit of the Reynolds Range, central Australia, contain metre-scale wollastonite-bearing layers formed by infiltration of water-rich (XCO2= 0.1–0.3) fluids close to the peak of regional metamorphism at c. 700° C. Within the wollastonite marbles, zones that contain 〈10% wollastonite alternate on a millimetre scale with zones containing up to 66% wollastonite. Adjacent wollastonite-free marbles contain up to 11% quartz that is uniformly distributed. This suggests that, although some wollastonite formed by the reaction calcite + quartz = wollastonite + CO2, the wollastonite-rich zones also underwent silica metasomatism. Time-integrated fluid fluxes required to cause silica metasomatism are one to two orders of magnitude higher than those required to hydrate the rocks, implying that time-integrated fluid fluxes varied markedly on a millimetre scale. Interlayered millimetre -to centimetre-thick marls within the wollastonite marbles contain calcite + quartz without wollastonite. These marls were probably not infiltrated by significant volumes of water-rich fluids, providing further evidence of local fluid channelling. Zones dominated by grandite garnet at the margins of the marl layers and marbles in the wollastonite-bearing rocks probably formed by Fe metasomatism, and may record even higher fluid fluxes. The fluid flow also reset stable isotope ratios. The wollastonite marbles have average calcite (Cc) δ18O values of 15.4 ± 1.6% that are lower than the average δ18O(Cc) value of wollastonite-free marbles (c. 17.2 ± 1.2%). δ13C(Cc) values for the wollastonite marbles vary from 0.4% to as low as -5.3%, and correlations between δ18O(Cc) and δ13C(Cc) values probably result from the combination of fluid infiltration and devolatilization. Fluids were probably derived from aluminous pegmatites, and the pattern of mineralogical and stable isotope resetting implies that fluid flow was largely parallel to strike.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 11 (1993), S. 0 
    ISSN: 1525-1314
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: Abstract Large calcite veins and pods in the Proterozoic Corella Formation of the Mount Isa Inlier provide evidence for kilometre-scale fluid transport during amphibolite facies metamorphism. These 10- to 100-m-scale podiform veins and their surrounding alteration zones have similar oxygen and carbon isotopic ratios throughout the 200 × 10-km Mary Kathleen Fold Belt, despite the isotopic heterogeneity of the surrounding wallrocks. The fluids that formed the pods and veins were not in isotopic equilibrium with the immediately adjacent rocks. The pods have δ13Ccalcite values of –2 to –7% and δ18Ocalcite values of 10.5 to 12.5%. Away from the pods, metadolerite wallrocks have δ18Owhole-rock values of 3.5 to 7%. and unaltered banded calc-silicate and marble wallrocks have δ13Ccalcite of –1.6 to –0.6%, and δ18Ocalcite of 18 to 21%. In the alteration zones adjacent to the pods, the δ18O values of both metadolerite and calc-silicate rocks approach those of the pods. Large calcite pods hosted entirely in calc-silicates show little difference in isotopic composition from pods hosted entirely in metadolerite. Thus, 100- to 500-m-scale isotopic exchange with the surrounding metadolerites and calc-silicates does not explain the observation that the δ18O values of the pods are intermediate between these two rock types. Pods hosted in felsic metavolcanics and metasiltstones are also isotopically indistinguishable from those hosted in the dominant metadolerites and calc-silicates. These data suggest the veins are the product of infiltration of isotopically homogeneous fluids that were not derived from within the Corella Formation at the presently exposed crustal level, although some of the spread in the data may be due to a relatively small contribution from devolatilization reactions in the calc-silicates, or thermal fluctuations attending deformation and metamorphism. The overall L-shaped trend of the data on plots of δ13C vs. δ18O is most consistent with mixing of large volumes of externally derived fluids with small volumes of locally derived fluid produced by devolatilization of calc-silicate rocks. Localization of the vein systems in dilatant sites around metadolerite/calc-silicate boundaries indicates a strong structural control on fluid flow, and the stable isotope data suggest fluid migration must have occurred at scales greater than at least 1 km. The ultimate source for the external fluid is uncertain, but is probably fluid released from crystallizing melts derived from the lower crust or upper mantle. Intrusion of magmas below the exposed crustal level would also explain the high geothermal gradient calculated for the regional metamorphism.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 21 (2003), S. 0 
    ISSN: 1525-1314
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: Fluid flow at greenschist facies conditions during exhumation of the western Alps occurred in several penecontemporaneous systems, including shear zones at lithological contacts, deformed contacts between serpentinite bodies and metabasalts, albite veins within metabasalts, and calcite + quartz veins within calcareous schists. Fluid flow in shear zones that juxtapose metasediments and ophiolitic rocks within the Piemonte Unit reset O and H isotope ratios. δ18O values are buffered by the wall rocks; however, calculated fluid δ2H values are similar within all the shear zones suggesting that they formed an interconnected network. The similarity of δ2H values of the sheared rocks and those of unsheared calcareous schists suggests that the fluids were derived from, or had equilibrated with, the schists that envelop the ophiolite rocks. Time-integrated fluid fluxes at the sheared contacts estimated from changes in Si in metabasalts were up to 105 m3 m−2, with the fluid flowing up temperature driven either by topography or seismic pumping. Individual shear zones were active for c. 2–3 Myr, implying average fluid fluxes of up to 10−9 m3 m−2 s−1. Rocks in shear zones within the ophiolite away from contacts with the metasediments show much less marked isotopic and geochemical changes, implying that fluid volumes decreased into the ophiolite unit, consistent with the source of fluids being the metasediments. Fluids were generated by dehydration reactions that were intersected during exhumation and, while many rocks show the affects of fluid–rock interaction, large-scale fluid flow between major units was not common.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science, Ltd
    Journal of metamorphic geology 20 (2002), S. 0 
    ISSN: 1525-1314
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: Metre to tens-of-metre wide, steeply dipping, greenschist facies shear zones that cut blueschists and eclogites of the Combin and Zermatt–Saas Zones at Täschalp and in adjacent areas of the western Alps were sites of extensive recrystallization driven by fluid flow and deformation. Rb–Sr data imply that these shear zones formed at 42–37 Ma with a systematic younging of structures northward toward, and into, the hangingwall of the Mischabel Structure. Shearing commenced at 400–475 °C and 400–500 MPa and continued as pressures and temperatures fell to 300–350 °C and 300–350 MPa. Individual shear zones were active for 2–3 Myr with later lower grade stages of shearing concentrated into narrow zones. Fluids that infiltrated the shear zones were water rich (XH2O 〉 0.9). Alteration zones around albite veins and at the margins of serpentinite bodies are penecontemporaneous with these shear zones and formed at approximately the same conditions. The eclogites were exhumed from c. 64 km at 44 Ma to 14–16 km at 42–41 Ma implying exhumation rates of 2–5 cm yr−1. Rapid exhumation was probably achieved by extension aided by buoyancy, following subduction of continental crust, and rapid erosion. The shear zones form part of a regional-scale extensional system responsible for a significant portion of the exhumation of the subducted oceanic crust.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 19 (2001), S. 0 
    ISSN: 1525-1314
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: Granulite facies rocks from the northernmost Harts Range Complex (Arunta Inlier, central Australia) have previously been interpreted as recording a single clockwise cycle of presumed Palaeoproterozoic metamorphism (800–875 °C and 〉9–10 kbar) and subsequent decompression in a kilometre-scale, E-W striking zone of noncoaxial, high-grade (c. 700–735 °C and 5.8–6.4 kbar) deformation. However, new SHRIMP U-Pb age determinations of zircon, monazite and titanite from partially melted metabasites and metapelites indicate that granulite facies metamorphism occurred not in the Proterozoic, but in the Ordovician (c. 470 Ma).The youngest metamorphic zircon overgrowths from two metabasites (probably meta-volcaniclastics) yield 206Pb/238U ages of 478±4 Ma and 471±7 Ma, whereas those from two metapelites yield ages of 463±5 Ma and 461±4 Ma. Monazite from the two metapelites gave ages equal within error to those from metamorphic zircon rims in the same rock (457±5 Ma and 462±5 Ma, respectively). Zircon, and possibly monazite ages are interpreted as dating precipitation of these minerals from crystallizing melt within leucosomes. In contrast, titanite from the two metabasites yield 206Pb/238U ages that are much younger (411±5 Ma & 417±7 Ma, respectively) than those of coexisting zircon, which might indicate that the terrane cooled slowly following final melt crystallization. One metabasite has a second titanite population with an age of 384±7 Ma, which reflects titanite growth and/or recrystallization during the 400–300 Ma Alice Springs Orogeny. The c. 380 Ma titanite age is indistinguishable from the age of magmatic zircon from a small, late and weakly deformed plug of biotite granite that intruded the granulites at 387±4 Ma. These data suggest that the northern Harts Range has been subject to at least two periods of reworking (475–460 Ma & 400–300 Ma) during the Palaeozoic.Detrital zircon from the metapelites and metabasites, and inherited zircon from the granite, yield similar ranges of Proterozoic ages, with distinct age clusters at c. 1300–1000 and c. 650 Ma. These data imply that the deposition ages of the protoliths to the Harts Range Complex are late Neoproterozoic or early Palaeozoic, not Palaeoproterozoic as previously assumed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 15 (1997), S. 0 
    ISSN: 1525-1314
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: Both magmatic and eclogitic parageneses are preserved in the gabbros of western Alpine ophiolites. Samples with relic magmatic mineralogies display partial transformation to eclogitic assemblages along cracks and grain boundaries. Gabbros with eclogitic mineralogies contain zoned pseudomorphs after olivine, comprising talc-rich cores with kyanite, Mg-chloritoid and omphacite in outer cores and garnet rims. The compositional zonation of these olivine pseudomorphs closely parallels that shown by olivines in hydrothermally altered ocean-floor gabbros.The eclogitic gabbros are hydrous, containing paragonite, zoisite and other water-bearing minerals, and it has been suggested that water was introduced during high-pressure metamorphism. However, the similarity of olivine alteration patterns to those of ocean-floor gabbros suggests that hydration and local metasomatism leading to the stability of aluminous minerals in olivine sites occurred during hydrothermal alteration prior to subduction. Oxygen-isotope systematics are consistent with this proposal: Alpine gabbros with magmatic relics have a mean δ18O value of 5.7±0.7, similar to that of unaltered oceanic crust, whereas eclogitic gabbros have a mean δ18O value of 4.8±0.9.This statistically significant difference is consistent with the eclogitic samples having undergone high-temperature ocean-floor alteration. The preservation of magmatic and hydrothermal δ18O values in ocean-floor gabbros that have been metamorphosed at 2–2.5 GPa (60–75 km) implies that the deeper levels of ocean crust have not experienced pervasive fluid flow during subduction or subsequent exhumation. Magmatic assemblages were preserved despite an overstep of eclogitization reactions by at least 0.6–1.1 GPa implying that equilibrium was not attained in undeformed parts of the system because of slow diffusion in water-deficient rock volumes.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 12 (1994), S. 0 
    ISSN: 1525-1314
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: Grandite garnet-rich calcsilicate rocks from the Lower Calcsilicate Unit of the regionally metamorphosed Reynolds Range Group (central Australia) crop out along a strike-parallel section in which a transition zone from M22 amphibolite to granulite facies rocks is exposed. Across this transition the grandite-rich layers do not show systematic changes in mineral assemblages, compositions and modes, or stable isotope compositions. These layers are deformed by F22 folds that are associated with the peak of regional low-pressure/high-temperature metamorphism. Therefore, the grandite-rich layers appear to pre-date regional metamorphism and to have acted as closed chemical systems during prograde M22 metamorphism.Mineral assemblages in the grandite-rich layers are consistent with their formation through the infiltration of oxidized, water-rich fluids (Xco2 〈 0.1–0.3; log fo2 -16 to -14). The stable isotope values of calcite (Δ13C=-4.2 to -0.8%0 PDB; Δ18O = 10.5–14.0%0 V-SMOW) and bulk-silicate fractions (Δ18O = 6.1 to 10.8%) of the grandite-rich layers are most consistent with the infiltrating fluid being from a magmatic source. It is most likely that fluid infiltration occurred during the pre-M22 contact metamorphism (M21) that affected much of the Reynolds Range Group. The preservation of these assemblages is probably due to their high variance and little pervasive fluid-rock interaction having occurred during M22.The clinopyroxene- and feldspar-rich calcsilicate rocks that host the grandite-rich layers contain poikiloblastic grandite garnet that formed during prograde M22 metamorphism. Thin marbles that locally occur with the grandite-rich layers contain a third garnet generation that is post- or late M22. This grossular-rich garnet occurs in coronas around calcite, plagioclase, clinopyroxene, wollastonite and scapolite. These coronas are consistent with cooling and/or compression. However, because the marble assemblages are themselves overprinted by M21 grandite-rich layers the development of coronal garnet does not reflect a continuous P-T-t path. Rather, it more probably reflects the partial re-equilibration of M21 contact metamorphic assemblages to post-M22 conditions.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 12 (1994), S. 0 
    ISSN: 1525-1314
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: During the Alice Springs Orogeny, deformation at Ormiston Gorge, central Australia, occurred under lower- to middle-greenschist facies conditions. Dolomites of the Bitter Springs Formation and quartzites. metagreywackes, and metapelites of the Heavitree Quartzite contain abundant early-, syn-, and post-tectonic veins. However, though vein densities locally approach 15%, the distribution of veins and the oxygen isotope geochemistry of wallrocks and veins suggest that fluid movement was on a local scale. The Heavitree Quartzite contains quartz veins that, even along the main thrust plane, have similar δ18O values (13.5–16.9%o) to those of their wallrocks (13.6–16.9%o), with Δ18O(vein-wallrock) values of -0.6 to 0.4%o. In contrast, the Bitter Springs Formation contains predominantly dolomite veins that have δ18O values of 23.4 to 27.7%o. These differences are observed even at the boundary between the Heavitree and Bitter Springs rocks, implying that significant fluid exchange between these rocks has not occurred, or that fluid flow was channelled through areas outside those sampled for this study. By contrast with the Heavitree Quartzite, δ18O values of wallrocks in individual samples of the Bitter Springs Formation are significantly higher (23.3–29.1%o) than those of the veins, with δ18O(vein-wallrock) values up to -4%o (average of -2.1%o). These systematic differences in δ18O values most likely result from oxygen isotope fractionation caused by fluid immiscibility or disequilibrium dissolution. Smaller differences in δ13C values between some dolomite veins and wallrocks [δ13C(vein-wallrock) up to -1.9%o, average of -0.5%o] are also explained by these processes. This study indicates that large volumes of veins may be produced by repeated fracturing and fluid migration within particular rock units, without involving large volumes of externally derived fluids.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 12 (1994), S. 0 
    ISSN: 1525-1314
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: The role of volatiles in the stabilization of the lower (granulite facies) crust is contentious. Opposing models invoke infiltration of CO2-rich fluids or generally vapour-absent conditions during granulite facies metamorphism. Stable isotope and petrological studies of granulite facies metacarbonates can provide constraints on these models. In this study data are presented from metre-scale forsteritic marble boudins within Archaean intermediate to felsic orthogneisses from the Rauer Group, East Antarctica.Forsteritic marble layers and associated calcsilicates preserve a range of 13C- and 18O-depleted calcite isotope values (δ13C= -9.9 to -3.0% PDB, δ18O = 4.0 to 12.1% SMOW). A coupled trend of 13C and 18O depletion (∼2%, ∼5%, respectively) from core to rim across one marble layer is inconsistent with pervasive CO2 infiltration during granulite facies metamorphism, but does indicate localized fluid-rock interaction. At another locality, more pervasive fluid infiltration has resulted in calcite having uniformly low, carbonatite-like δ18O and δ13C values. A favoured mechanism for the low δ18O and δ13C values of the marbles is infiltration by fluids that were derived from, or equilibrated with, a magmatic source. It is likely that this fluid-rock interaction occurred prior to high-grade metamorphism; other fluid-rock histories are not, however, ruled out by the available data. Coupled trends of 13C and 18O depletion are modified to even lower values by the superposed development of small-scale metasomatic reaction zones between marbles and internally folded mafic (?) interlayers. The timing of development of these layers is uncertain, but may be related to Archaean high-temperature (〉1000d̀C) granulite facies metamorphism.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...