Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 108 (1998), S. 8878-8883 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Microwave measurements of rotational transitions for cyclopentadienyl rhenium tricarbonyl were performed in the gas phase using pulsed beam Fourier transform microwave spectroscopy. One hundred and sixty five transitions were assigned to two isotopomers of rhenium. The location of the rhenium atom near the center of mass produced significant overlap between the spectra of the two isotopomers. The data were accurately fit using a symmetric top, rigid rotor Hamiltonian that included nuclear quadrupole coupling and centrifugal distortion constants. The rotational constants obtained were B(187Re) = 724.9794(2), B(185Re) = 724.9795(2). The quadrupole coupling constants obtained were eQq(187Re) = 614.464(12) and eQq(185Re) = 649.273(14) MHz. The successful fitting of the measured spectra to a symmetric top Hamiltonian indicates that the cyclopentadienyl group retains C5v symmetry, and the Re(CO)3 group C3v symmetry in the gas phase. The measured rotational constants are in reasonable agreement with those calculated from the structural parameters obtained in the earlier x-ray work. The Re quadrupole coupling constants obtained are compared with values for other complexes. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Microwave rotational transitions for J′←J=2←1 and 3←2 were measured in the 7–11 GHz range for three isotopomers of (C5H5)In. Similar transitions (up to J′←J=5←4) for eight isotopomers of (C5H5)Tl were measured in the 5–15 GHz range. The rotational constants of the most abundant isotopomers are B(Cp 203Tl)=1467.9730(11) MHz, B(Cp 205Tl) =1465.0723(14) MHz, B(Cp 113In)=1809.9785(30) MHz, and B(Cp 115In)=1800.8199(18) MHz (Cp=C5H5). The quadrupole coupling strengths for the indium compounds are eQq(Cp 113In)=−118.397(69) MHz and eQq(Cp 115In)=−119.981(31) MHz. Spectra for single-substitution 13C isotopomers were seen in natural abundance. Deuterated samples of CpTl were prepared to obtain spectra for deuterium-substituted isotopomers. Analysis of the spectra allowed the determination of the following structural parameters; for (C5H5)Tl, r(Tl–C5)=2.413(3) Å, r(C–C)=1.421(10) Å, r(C–H)=1.082(9) Å and (angle)C5–H=0.9(2)° (C5 represents the planar, 5-carbon ring of C5H5), and for (C5H5)In, r(In–C5)=2.314(4) Å and r(C–C)=1.426(6) Å. A Kraitchman analysis was performed on the available isotopomers for comparison of r0 and rs values. Both structural analyses indicate that the hydrogen atoms in (C5H5)Tl are bent slightly out of the carbon plane away from the coordinated metal atom. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...