Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 42 (1996), S. 2439-2452 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Local and macroscopic solids flow structure and kinematics in a 3-D gas-liquid-solid fluidized bed were studied using a noninvasive radioactive-particle tracking (RPT) technique. Based on the multisite detection of γ radiations emitted from a single radiolabeled tracer particle freely moving in the fluidized bed, RPT permitted to obtain fast sampling of 3-D trajectories of the tracer, whose physical properties were similar to those of the solids inventory. These trajectories showed the detailed motion sequences of the solid particles as entrained in the bubble wakes, fluctuating randomly or sinking deterministically in the liquid-solid emulsion. Based on measurements done in the vortical-spiral flow regime, the dynamic solids flow structure inside a three-phase fluidized bed can be viewed as a three-zone core-annulus-annulus structure: (1) a central fast-bubble flow region with the particles swirling upward; (2) a vortical flow region around the velocity inversion point with the particles momentarily captured in emulsion vortices; and (3) a relatively bubble-free descending flow region where the particles spiral down between the velocity inversion point and vessel walls. Our solids flow structure of dense fluidized beds are similar to the flow structure of liquid and/or solid in lean fluidized beds (observed through laser sheeting imaging). Measured distributions of local ensemble-averaged particle velocities and turbulence intensities were consistent with the existence of a toroidal recirculatory solids flow pattern in the bed. Measured mean circumferential ensemble-averaged radial velocity was essentially zero throughout most of the bed. The solids flow turbulence field was nonisotropic, as radial turbulence intensities were generally lower than longitudinal turbulence intensities.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...