Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1524-475X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Transfection of wounds with DNA-encoding growth factors has the potential to improve healing, but current means of nonviral gene delivery are inefficient. Repeated high doses of DNA, necessary to achieve reliable gene expression, are detrimental to healing. We assessed the ability of in vivo electroporation to enhance gene expression. Full-thickness cutaneous excisional wounds were created on the dorsum of female mice. A luciferase- encoding plasmid driven by a CMV promoter was injected at the wound border. Following plasmid administration, electroporative pulses were applied to injection sites. Pulse parameters were varied over a range of voltage, duration, and number. Animals were euthanized at intervals after transfection and the luciferase activity measured. Application of electric pulses consistently increased luciferase expression. The electroporative effect was most marked at a plasmid dose of 50 µg, where an approximate tenfold increase was seen. Six 100-µs-duration pulses of 1750 V/cm were found to be the most effective in increasing luciferase activity. High numbers of pulses tended to be less effective than smaller numbers. This optimal electroporation regimen had no detrimental effect on wound healing. We conclude that electroporation increases the efficiency of transgene expression and may have a role in gene therapy to enhance wound healing.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 55 (1994), S. 340-349 
    ISSN: 0730-2312
    Keywords: osteoclast formation ; resorption ; CSF-1 ; bone ; cytokine ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Colony-stimulating factor-1 (CSF-1) is a cytokine required for proliferation, differentiation, activity, and survival of cells of the mononuclear phagocytic system. The growth factor is synthesized as a soluble, matrix, or membrane associated molecule. The specific functions of these forms are not clear. However, some data suggest a dependence of the development of various populations of tissue macrophages on the locally expressed and presented cytokine. Deficiency in CSF-1, as is the case in the murine mutant strain op/op, results in low numbers of macrophages and monocytes and, most striking, leads to osteopetrosis due to a virtual absence of osteoclasts. Using the op/op mutation as a model, CSF-1 was established as one of the growth factors for osteoclasts. The expression of CSF-1 receptors, encoded by the proto-oncogene c-fms, by osteoclast precursors and osteoclasts, suggested an effect of this cytokine not only during osteoclast formation but also on the mature cells. In fact, CSF-1 was shown to inhibit the resorbing activity, to stimulate migration, and to support survival of isolated osteoclasts in vitro. By these actions on cells of the osteoclast lineage, CSF-1 induces recruitment of new osteoclasts, leading to a net increase of bone resorption, and might govern the spatial distribution of resorption sites within the bone. During these processes, locally expressed and presented forms of the growth factor may play a crucial role, as will be discussed in this article. © 1994 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...