Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of food science 69 (2004), S. 0 
    ISSN: 1750-3841
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: : Cylindrical specimens of fresh pork muscle packed in plastic bags were frozen by air blaster freezing (ABF), liquid immersion freezing (LIF), and pressure-shift freezing (PSF) (100 to 200 MPa). Sample internal temperature and phase transformations were monitored at center, midway, and surface locations. ABF and LIF resulted in large irregular ice crystals, causing serious muscle structure deformation. PSF ice crystals were generally small and regular, but differed along the radial direction. Near the surface, there were many fine and regular intracellular ice crystals with well-preserved muscle tissue. From midway to the center, ice crystals were larger in size and located extracellularly. Ice crystal formation was affected by super-cooling during/after depressurization and subsequent freezing.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 30 (1995), S. 142-150 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The modification of the morphology of immiscible binary blends in a co-rotating twin-screw extruder equipped with capillary dies of various lengths has been studied. Blends of polycarbonate and polypropylene were investigated using scanning electron microscopy. The size and shape of the dispersed phase were found to be significantly affected by the viscosity ratio. The morphology of the blends containing 5% minor phase varied with radial and axial positions in the die. Capillary instabilities were observed at the entrance of the die. The generation and disintegration of these capillary instabilities were found to occur rapidly. Fibre formation was favoured for all blends containing higher concentrations of minor phase (20%). To investigate the influence of the interface on deformation of the minor phase, blends of polyethylene and polyamide were compatibilized with a polyethylene copolymer ionomer. The compatibilizer was found to be effective in considerably reducing the size of the minor phase. The final state of deformation of the dispersed phase was reduced significantly with addition of the ionomer.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1947-1958 
    ISSN: 0887-6266
    Keywords: interfacial tension ; breaking thread ; polyamide ; polyethylene ; interface ; modifier morphology ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Compared to the dynamic mixing process used in melt blending operations, most techniques for measuring the interfacial tension can be considered as virtually static. For this reason, in order to measure the interfacial tension of an A-B immiscible system in the presence of an interfacial modifier, the problem of migrating the modifier to the interface is a central issue. In this study, the influence of the addition of an interfacial modifier, a polyethylene copolymer ionomer, on the interfacial tension between two high-density polyethylenes and a polyamide is investigated. The breaking thread method is used and the interfacial tension is measured as a function of ionomer content. In order to enhance the likelihood of placing the modifier in closer proximity to the interface, various sample preparations are compared. In all cases, the interfacial tension significantly drops with increasing ionomer content and tends to a limiting value. It is shown, however, that the preparation of the system for the breaking thread experiment via coextrusion using a conical die brings the modifier in closest proximity to the interface. With this approach an additional 1.45 times reduction of the interfacial tension at 10% compatibilizer concentration (based on the mass of HDPE) is observed compared to the classical technique of preparation. Confirmation of this effect is demonstrated using X-ray photoelectron spectroscopy where analysis of the thread surface of the system prepared by coextrusion indicates a more than fourfold enrichment of interfacial modifier. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1947-1958, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...