Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 55 (2005), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Sclerotinia sclerotiorum is a filamentous ascomycete phytopathogen able to infect an extremely wide range of cultivated plants. Our previous studies have shown that increases in cAMP levels result in the impairment of the development of the sclerotium, a highly differentiated structure important in the disease cycle of this fungus. cAMP also inhibits the activation of a S. sclerotiorum mitogen-activated protein kinase (MAPK), which we have previously shown to be required for sclerotial maturation; thus cAMP-mediated sclerotial inhibition is modulated through MAPK. However, the mechanism(s) by which cAMP inhibits MAPK remains unclear. Here we demonstrate that a protein kinase A (PKA)-independent signalling pathway probably mediates MAPK inhibition by cAMP. Expression of a dominant negative form of Ras, an upstream activator of the MAPK pathway, also inhibited sclerotial development and MAPK activation, suggesting that a conserved Ras/MAPK pathway is required for sclerotial development. Evidence from bacterial toxins that specifically inhibit the activity of small GTPases, suggested that Rap-1 or Ras is involved in cAMP action. The Rap-1 inhibitor, GGTI-298, restored MAPK activation in the presence of cAMP, further suggesting that Rap-1 is responsible for cAMP-dependent MAPK inhibition. Importantly, inhibition of Rap-1 is able to restore sclerotial development blocked by cAMP. Our results suggest a novel mechanism involving the requirement of Ras/MAPK pathway for sclerotial development that is negatively regulated by a PKA-independent cAMP signalling pathway. Cross-talk between these two pathways is mediated by Rap-1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 51 (2004), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The small G-protein superfamily is an evolutionarily conserved group of GTPases that regulate diverse signalling pathways including pathways for growth and development in eukaryotes. Previously, we showed that dominant active mutation in the unique Ras gene (DARas) of the fungal phytopathogen Colletotrichum trifolii displays a nutrient-dependent phenotype affecting polarity, growth and differentiation. Signalling via the MAP kinase pathway is significantly impaired in this mutant as well. Here we describe the cloning and functional characterization of Rac (Ct-Rac1), a member of the Rho family of G proteins. Ct-Rac1 expression is downregulated by DARas under limiting nutrition. Co-expression of DARas with dominant active Rac (DARac) stimulates MAPK activation and restores the wild-type phenotype. Inhibition of MAPK activation suppresses phenotypic restoration suggesting Rac-mediated MAPK activation is responsible for reversion to the wild-type phenotype. We also examined the role of reactive oxygen species (ROS) in these genetic backgrounds. The DARas mutant strain generates high levels of ROS as determined by DCFH-DA fluorescence. Co-expression with DNRac decreases ROS generation to wild-type levels and restores normal fungal growth and development. Pretreatment of DARas with antioxidants or a cytosolic phospholipase A2 inhibitor also restores the wild-type phenotype. These findings suggest that Ras-mediated ROS generation is dependent on a Rac–cPLA2-linked signalling pathway. Taken together, this study provides evidence that Rac functions to restore the hyphal morphology of DARas by regulating MAPK activation and intracellular ROS generation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...