Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 38 (1992), S. 407-424 
    ISSN: 1573-4889
    Keywords: chromium-modified aluminide coatings ; hot corrosion ; pack inclusions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This paper reports the successful co-deposition of inclusion-free chromiummodified aluminide coatings using a pack-cementation process. The substrate used was the nickel-base superalloy, René 80H. The coatings were of the outward-diffusion type; however, unlike the usual outward-diffusion coatings, the present coatings were relatively free of pack inclusions. The coatings consisted of α-Cr precipitates in a matrix of β-NiAl. The morphology and distribution of the α-Cr precipitates could be adjusted to the extent that two types of coating structures could be obtained. The Type I coating structure contained lamellar α-Cr precipitates situated in the surface region of the coating, whereas the Type II coating structure contained small, spheroidal α-Cr precipitates distributed throughout the outer of a two-layered coating. Both coating types exhibited significantly improved hot-corrosion resistance in a 0.1% SO2-O2 environment at 900°C compared to a commercial aluminide coalting. A study of the corrosion behavior of Type I coatings containing pack inclusions showed that the inclusions were deleterious to the corrosion resistance of the coatings. The corrosion behavior of chromium-aluminide coatings was dependent on both the distribution and amount of α-Cr precipitates in the coating.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 36 (1991), S. 15-25 
    ISSN: 1573-4889
    Keywords: anions ; diffusion ; intercalation ; point defects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The kinetics of molybdenum sulfidation have been studied in H2S/H2 gas mixtures at 1173 K. Sulphur partial pressures were controlled by the equilibrium reaction between H2S, H2, and S2. Pure molybdenum metal was sulfidized at a fixed $$p{_S} _{_2 } $$ value of 133 Pa with varying H2S and H2 partial pressures, and at fixed H2S partial pressures of 5.06×10 pa4 and 5.06×103 Pa with varying hydrogen and sulfur partial pressures. The gravimetric sulfidation kinetics were parabolic under all conditions. X-ray diffraction analysis of the reaction product scale revealed the presence of MoS2 only. The sulfide scales were of uniform thickness, had a compact morphology, and were tightly adherent to the metal. The sulfidation rates at a fixed sulfur partial pressure increased with increasing hydrogen partial pressure. At fixed $$p{_H} _{_2} {_S} $$ values, the rate was almost constant at high $$p{_H} _{_2 } $$ values, but increased substantially as $$p{_H} _{_2 } $$ was decreased. Defect models for hydrogen dissolution in MoS2 are developed and compared with the experimental results. It is concluded that the sulfidation rate effects are due to hydride anion occupation of interlayer sites in MoS2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...