Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 25 (1977), S. 551-553 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of environmental contamination and toxicology 13 (1975), S. 209-217 
    ISSN: 1432-0800
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biochemical genetics 11 (1974), S. 205-219 
    ISSN: 1573-4927
    Keywords: heterosis ; heterozygosity ; hybrids ; isozymes ; sunfish ; Centrarchidae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Allelic segregation in reciprocal backcrosses involving the largemouth bass (Micropterus salmoides) and the F1 hybrid (largemouth bass × smallmouth bass, M. dolomieui) was investigated to determine the extent of euheterosis and luxuriance. The frequencies of allelic isozymes encoded in the lactate dehydrogenase E, malate dehydrogenase B, and isocitrate dehydrogenase loci were determined for reciprocal backcross progeny subjected to different selection pressures. The progeny of the backcross (male F1 × female largemouth bass) underwent a rapid loss of heterozygous individuals in a natural pond environment. When the offspring of this same mating were placed in artificial pools, where cannibalism is the main source of mortality, heterozygosity was advantageous. There was a marked correlation of increased heterozygosity at these enzyme loci with an increased growth rate. None of the above responses to selection was observed when the F1 hybrid served as the maternal parent in the reciprocal backcross. A maternal factor in the egg cytoplasm may influence the expression of heterosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-4927
    Keywords: enzyme kinetics ; allelic isozymes ; malate dehydrogenase ; largemouth bass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Two alleles are encoded at the malate dehydrogenase locus in largemouth bass, Micropterus salmodies. Populations in the extreme northern areas of the range of this fish are fixed or nearly fixed for the B1 allele, whereas populations in Florida are fixed for the alternative allele, B2. The MDH-B1B1 and MDH-B2B2 allelic isozymes were isolated by preparative starch gel electrophoresis and subjected to in vitro kinetic analyses. The apparent K m(oxaloacetate) for each of these allelic isozymes was determined at 25, 30, and 35° C. The K mvalues for both isozymes increased with increasing temperature and were not significantly different from each other at 25 and 35° C. However, at 30° C the K mvalue for the MDH-B1B1 allelic isozyme was higher than that for the MDH-B2B2 isozyme (i.e., 5.4×10−5 vs 3.3×10−5). These results are consistent with the hypothesis that the different environmental temperatures at different latitudes may be at least partially responsible for the north-south cline in Mdh-B allele frequencies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-4927
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract A combination of hybridization (in vivo and in vitro), immunochemical, and electrophoretic analyses reveals that both smallmouth bass, Micropterus dolomieui (Lacépède), and largemouth bass, M. salmoides (Lacépède), possess three homopolymeric lactate dehydrogenase (LDH) isozymes, A4, B4, and E4. The retinal-specific E4 isozymes of these two parental species possess different electrophoretic mobilities. The two bass species were hybridized to produce the interspecific F1 hybrids. In addition, F2 and F3 hybrid generations were produced. The genetic data from these crosses indicate that the retinal-specific LDH isozyme is the product of a distinct nuclear gene (E locus) on an autosomal chromosome. This E gene appears to segregate independently of the gene for supernatant MDH. The LDH E gene is highly active in the bass neural retina and less active in other neural tissues. However, unlike in most teleosts, the bass LDH E gene also functions in such nonneural tissues as the heart and kidney.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-4927
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Hybrid populations of sunfishes were produced in two different ponds, and the frequencies of allelic isozyme phenotypes were determined for three enzyme systems—malate dehydrogenase (NAD), esterases, and tetrazolium oxidase—in order to estimate the extent of heterozygosity at four different genetic loci. Interspecific F1 hybrid fry (red-ear male × bluegill female) were produced in vitro. These fry were stocked in ponds at the free-swimming stage. When 1 year old, the F1 hybrids produced a large F2 hybrid population. Successful hybrid reproduction occurred each year thereafter. In one pond, a 1-year-old F2 population exhibited all three isozyme phenotypes (red-ear, F1, bluegill) at most loci in the approximate ratio of the 1:2:1 expected. In a second pond, 5-year-old individuals of the F2 generation were morphologically like the F1 and were all heterozygous for the enzyme loci studied. This unusual degree of heterozygosity in the older F2 population appeared to be the result of differential survival of mature heterozygous individuals and not the result of early embryonic lethality. The increased heterozygosity at these unlinked loci was assumed to reflect the condition at other genetic loci in the F2 hybrids. Several possible mechanisms are advanced to explain this apparent heterosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...