Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 438.2005, 7065, E3-, (1 S.) 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Arising from: S. M. Smirnakis et al. Nature 435, 300–307 (2005); S. M. Smirnakis et al. reply Any analysis of plastic reorganization at a neuronal locus needs a veridical measure of changes in the functional output — ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Temporal filtering ; Lateral geniculate nucleus ; Signal transmission ; Signal transmission ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The dependency of intrageniculate signal transfer on stimulus temporal frequency was investigated by comparing responses of individual X-relay cells with their direct retinal inputs in anesthetized and paralyzed cats. Temporal frequency response functions of lateral geniculate nucleus (LGN) X-cells were more narrowly tuned than those of their retinal inputs. The efficiency of signal transfer was consistently highest at or around the geniculate cells' optimal temporal frequency, and the degree of signal transfer, which was more closely related to the LGN cells' firing rate than to the firing rate of their retinal input, decreased for both lower and higher temporal frequencies. The high temporal frequency cut-offs were significantly lower in geniculate cell responses than those of their direct retinal inputs. This reduction in temporal resolution was exaggerated for relatively low stimulus spatial frequencies. The present results provide clear evidence for the notion that LGN cells function as nonlinear temporal filters and that this stimulus-dependent signal transmission appears to be regulated by complex local mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...