Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
  • 1
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: The activity of multifunctional calcium/calmodulin-dependent protein kinase II (CaM kinase II) has recently been shown to be inhibited by transient global ischemia. To investigate the nature of ischemia-induced inhibition of the enzyme, CaM kinase II was purified to 〉 1,000-fold from brains of control and ischemic gerbils. The characteristics of CaM kinase II from control and ischemic preparations were compared by numerous parameters. Kinetic analysis of purified control and ischemic CaM kinase II was performed for autophosphorylation properties, ATP, magnesium, calcium, and calmodulin affinity, immunoreactivity, and substrate recognition. Ischemia induced a reproducible inhibition of CaM kinase II activity, which could not be overcome by increasing the concentration of any of the reaction parameters. Ischemic CaM kinase II was not different from control enzyme in affinity for calmodulin, Ca2+, Mg2+, or exogenously added substrate or rate of autophosphorylation. CaM kinase II isolated from ischemic gerbils displayed decreased immunoreactivity with a monoclonal antibody (immunoglobulin G3) directed toward the β subunit of the enzyme. In addition, ischemia caused a significant decrease in affinity of CaM kinase II for ATP when measured by extent of autophosphorylation. To characterize further the decrease in ATP affinity of CaM kinase II, the covalent-binding ATP analog 8-azidoadenosine-5′-[α-32P]triphosphate was used. Covalent binding of 25 μM azido-ATP was decreased 40.4 ± 12.3% in ischemic CaM kinase II when compared with control enzyme (n = 5; p 〈 0.01 by paired Student's t test). Thus, CaM kinase II levels for ischemia and control fractions were equivalent by protein staining, percent recovery, and calmodulin binding but were significantly different by immunoreactivity and ATP binding. The data are consistent with the hypothesis that ischemia induces a posttranslational modification that alters ATP binding in CaM kinase II and that results in an apparent decrease in enzymatic activity.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: Status epilepticus is associated with sustained and elevated levels of cytosolic Ca2+. To elucidate the mechanisms associated with changes of cytosolic Ca2+ after status epilepticus, this study was initiated to evaluate the effect of pilocarpine-induced status epilepticus on Mg2+/Ca2+ ATPase-mediated Ca2+ uptake in microsomes isolated from rat cortex, because the Ca2+ uptake mechanism plays a major role in regulating intracellular Ca2+ levels. The data demonstrated that the initial rate and overall Ca2+ uptake in microsomes from pilocarpinetreated animals were significantly inhibited compared with those in microsomes from saline-treated control animals. It was also shown that the inhibition of Ca2+ uptake caused by status epilepticus was not an artifact of increased Ca2+ release from microsomes, selective isolation of damaged microsomes from the homogenate, or decreased Mg2+/Ca2+ ATPase protein in the microsomes. Pretreatment with the NMDA antagonist dizocilpine maleate blocked status epilepticus-induced inhibition of the initial rate and overall Ca2+ uptake. The data suggest that inhibition of microsomal Mg2+/Ca2+ ATPase Ca2+ uptake is involved in NMDA-dependent deregulation of cytosolic Ca2+ homeostasis associated with status epilepticus.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: This study focused on the effects of status epilepticus on the activity of calcineurin, a neuronally enriched, calcium-dependent phosphatase. Calcineurin is an important modulator of many neuronal processes, including learning and memory, induction of apoptosis, receptor function and neuronal excitability. Therefore, a status epilepticus-induced alteration of the activity of this important phosphatase would have significant physiological implications. Status epilepticus was induced by pilocarpine injection and allowed to continue for 60 min. Brain region homogenates were then assayed for calcineurin activity by dephosphorylation of p-nitrophenol phosphate. A significant status epilepticus-dependent increase in both basal and Mn2+-dependent calcineurin activity was observed in homogenates isolated from the cortex and hippocampus, but not the cerebellum. This increase was resistant to 150 nm okadaic acid, but sensitive to 50 µm okadaic acid. The increase in basal activity was also resistant to 100 µm sodium orthovanadate. Both maximal dephosphorylation rate and substrate affinity were increased following status epilepticus. However, the increase in calcineurin activity was not found to be due to an increase in calcineurin enzyme levels. Finally, increase in calcineurin activity was found to be NMDA-receptor activation dependent. The data demonstrate that status epilepticus resulted in a significant increase in both basal and maximal calcineurin activity.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 79 (2001), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: In the rat pilocarpine model, 1 h of status epilepticus caused significant inhibition of Mg2+/Ca2+ ATPase-mediated Ca2+ uptake in cortex endoplasmic reticulum (microsomes) isolated immediately after the status episode. The rat pilocarpine model is also an established model of acquired epilepsy. Several weeks after the initial status epilepticus episode, the rats develop spontaneous recurrent seizures, or epilepsy. To determine whether inhibition of Ca2+ uptake persists after the establishment of epilepsy, Ca2+ uptake was studied in cortical microsomes isolated from rats displaying spontaneous recurrent seizures for 1 year. The initial rate and total Ca2+ uptake in microsomes from epileptic animals remained significantly inhibited 1 year after the expression of epilepsy compared to age-matched controls. The inhibition of Ca2+ uptake was not due to individual seizures nor an artifact of increased Ca2+ release from epileptic microsomes. In addition, the decreased Ca2+ uptake was not due to either selective isolation of damaged epileptic microsomes from the homogenate or decreased Mg2+/Ca2+ ATPase protein in the epileptic microsomes. The data demonstrate that inhibition of microsomal Mg2+/Ca2+ ATPase-mediated Ca2+ uptake in the pilocarpine model may underlie some of the long-term plasticity changes associated with epileptogenesis.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: γ-Aminobutyric acid (GABA) is the primary neurotransmitter that is responsible for the fast inhibitory synaptic transmission in the central nervous system. A major post-translational mechanism that can rapidly regulate GABAAR function is receptor phosphorylation. This study was designed to test the effect of endogenous calcium and calmodulin-dependent kinase II (CaM kinase II) activation on both allosteric modulator binding and GABAA receptor subunit phosphorylation. Endogenous CaM kinase II activity was stimulated, and GABAA receptors were subsequently analyzed for bothallosteric modulator binding properties and immunoprecipitated and analyzed for subunit phosphorylation levels. A significant increase in allosteric-modulator binding of the GABAAR was observed under conditions maximal for CaM kinase II activation. In addition, CaM kinase II activation resulted in a direct increase in phosphorylation of the GABAA receptor α1 subunit. The data suggest that the CaM kinase II-dependent phosphorylation of the GABAA receptor α1 subunit modulated allosteric modulator binding to the GABAA receptor.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...