Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: DjlA is a novel DnaJ-like protein localized to the inner membrane of Escherichia coli through the single transmembrane domain (TMD) found at the N-terminus. The overproduction of DjlA activates expression of the cps operon, controlling synthesis and export of the extracellular polysaccharide colanic acid via the Rcs/B two-component signal transduction pathway. We now show that both the TMD and the J-region are essential for the induction of cps expression observed with the overproduction of DjlA. Furthermore, we describe the isolation and characterization of different point mutations in the TMD that completely or partially block the induction of cps expression associated with overproduction of DjlA. These mutations were shown not to affect the localization, stability or topology of the mutant DjlA proteins. We propose that these mutations are affecting specific interactions between the TMD of DjlA and its substrate protein(s), for example RcsC, the membrane sensor kinase partner of the Rcs/B signal transduction pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 20 (1996), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: We describe a novel Escherichia coli protein, DjlA, containing a highly conserved J-region motif, which is present in the DnaJ protein chaperone family and required for interaction with DnaK. Remarkably, DjlA is shown to be a membrane protein, localized to the inner membrane with the unusual Type III topology (N-out, C-in). Thus, DjlA appears to present an extremely short N-terminus to the periplasm and has a single transmembrane domain (TMD) and a large cytoplasmic domain containing the C-terminal J-region. Analysis of the TMD of DjIA and recently identified homologues in Coxiella burnetti and Haemophilus influenzae revealed a striking pattern of conserved glycines (or rarely alanine), with a four-residue spacing. This motif, predicted to form a spiral groove in the TMD, is more marked than a repeating glycine motif, implicated in the dimerization of TMDs of some eukaryotic proteins. This feature of DjlA could represent a promiscuous docking mechanism for interaction with a variety of membrane proteins. DjlA null mutants can be isolated but these appear rapidly to accumulate suppressors to correct envelope and growth defects. Moderate (10-fold) overproduction of DjlA suppresses a mutation in FtsZ but markedly perturbs cell division and cell-envelope growth in minimal medium. We propose that DjlA plays a role in the correct assembly, activity and/or maintenance of a number of membrane proteins, including two-component signal-transduction systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Photorhabdus are bacteria found colonizing the gut of a specialized stage of the nematode Heterorhabditis, called the infective juvenile (IJ). The IJ is a free-living stage of the nematode that seeks out and infects insect larvae. Once inside the insect the IJ release Photorhabdus into the haemolymph where the bacteria rapidly proliferate, killing the insect within 48–72 h. The nematodes grow and reproduce in the insect cadaver by feeding on the Photorhabdus biomass. In this study we use Photorhabdus temperata K122 to show that genes involved in iron acquisition play a key role during the course of the tripartite bacteria–nematode–insect interaction. We show that a strain carrying a mutation in a gene with homology to exbD, encoding a component of the TonB complex, is unable to grow well in conditions where iron is not freely available. In addition, this mutant, BMM417, requires a longer time to kill the insect larvae than the wild-type bacteria and this defect in pathogenicity is complemented by the co-injection of iron. Moreover, the increase in LT50 observed with BMM417 is correlated with a significantly slower in vivo growth rate suggesting that iron is limiting in the insect. We also show that BMM417 is unable to support the growth and development of the Heterorhabditis nematode. Addition of exogenous iron to the growth media restores nematode growth and development on BMM417, suggesting that aspects of iron metaboism in Photorhabdus are important during the symbiosis with the nematode.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 47 (2003), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Photorhabdus is a genus of entomopathogenic Gram-negative bacteria that belong to the family Enterobactericeae. Remarkably, at the same time as being pathogenic to insect larvae, Photorhabdus also have a mutualistic relationship with entomophagous nematodes of the family Heterorhabditiae. Photorhabdus can be isolated in two phenotypically distinct forms, termed the primary and secondary variant. Both variants grow equally well and are equally virulent when injected into insect larvae. However, only the primary variant can colonize the intestinal tract of the IJ stage of the nematode and support nematode growth and development. The primary variant expresses several phenotypes that are absent from the secondary variant, including the production of extracellular enzymes, pigments, antibiotics and light. In this study, we use Photorhabdus temperata strain K122 to show that these primary-specific products are symbiosis factors, i.e. factors that are required for nematode growth and development. We also show that, in P. temperata K122, the production of these symbiosis factors is repressed in the secondary variant by the protein encoded by a gene with homology to hexA from Erwinia . Moreover, the derepression of the symbiosis factors in the secondary variant results in a significant attenuation of virulence to larvae of the greater wax moth, Galleria mellonella . This suggests that, during a normal infection, pathogenicity and symbiosis must be temporally separated and that HexA is involved in the regulation of this pathogen–symbiont transition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Bacteria are often found associated with surfaces as sessile bacterial communities called biofilms, and the formation of a biofilm can be split up into different stages each requiring the expression of specific genes. The production of extracellular polysaccharides (EPS) is important for the maturation of biofilms and is controlled by the Rcs two-component pathway in Escherichia coli (and other Gram-negative bacteria). In this study, we show, for the first time, that the RcsC sensor kinase is required for normal biofilm development in E. coli. Moreover, using a combination of DNA macroarray technology and transcriptional fusion analysis, we show that the expression of 〉 150 genes is controlled by RcsC in E. coli. In silico analyses of the RcsC regulon predicts that 50% of the genes encode proteins that are either localized to the envelope of E. coli or have activities that affect the structure/properties of the bacterial surface, e.g. the production of colanic acid. Moreover, we also show that RcsC is activated during growth on a solid surface. Therefore, we suggest that the RcsC sensor kinase may play an important role in the remodelling of the bacterial surface during growth on a solid surface and biofilm formation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 11 (1981), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Educational studies in mathematics 25 (1993), S. 235-250 
    ISSN: 1573-0816
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper examines one mode of mathematical communication: that of student journal writing in mathematics. The focus of the discussion is a study of four years' use of journal writing in mathematics involving approximately 500 students in Grades 7 through 11 in a particular Victorian secondary school. The evaluation of the experimental use in one school of journal writing in mathematics provides a powerful demonstration of the link between language and mathematics and suggests a relationship between students' mathematical writings and their perceptions of mathematics and mathematical activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...