Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 33 (1997), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : A two-year study was conducted to assess the effect of hog manure on the losses of nitrogen and phosphorus in runoff and drainage from grain-corn (Zea mays L.) plots, and the importance of spring versus annual loads. Treatments consisted of mineral N-P-K fertilizer applied at rates of 152 kg N ha-1, 35 kg P ha-1, and 86 kg K ha-1; and hog (Sus scrofa domestica L.) manure applied preplant or post-emergence (six-to-eight leaf stage), at 152 kg N ha-1, 39 kg P ha-1, and 112 kg K ha-1. The plots were rototilled (7 cm depth) in spring to incorporate fertilizer and preplant hog manure, and fall chisel-plowed (15 cm depth) to incorporate chopped corn residues. They were arranged in a completely randomized plot design. Flow volumes and nutrient levels in runoff and drainage waters were monitored year round but occurred mainly during the snowmelt (March 25-April 9), and post.snowmelt (April 10-May 13) periods. Of the total amount of water lost during snowmelt, 90 percent was in runoff, while 92 percent occurred as drainage in the post-snowmelt period. Sixty-five percent of the total annual volume of water lost was lost during these two periods as runoff and drainage. Treatments did not affect the annual snowmelt or post-snowmelt N and P loads. Total annual loads averaged 8.0 kg TKN ha-1, 1.8 kg NH4-N ha-1, 43 kg NO3-N ha-1, 0.4 kg TP ha-1, and 0.15 kg PO4-P ha-1. Spring (snowmelt and ost-snowmelt) runoff and drainage loads averaged 2.9 kg TKN ha-1, 1.2 kg NH4-N ha-1, 18 kg NO3-N ha-1, 0.25 kg TP ha-1, and 0.04 kg PO4-P ha-1, which were 40 percent to 70 percent of the yearly nutrient loads. Therefore, the hog manure management systems examined were of no greater threat to the environment than mineral fertilizers. However, spring N and P losses do represent an important part of the annual nutrient loss budget, even with conservation practices.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 42 (1988), S. 353-364 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract In the absence of long term solutions for the management of swine manure, the present study proposes an emergency remedial measure aimed at reducing the eutrophic load of the supernatant of swine manure when discharge in the aquatic environment is unavoidable. Phosphate removal appears to be a temporary solution to the reduction of manure fertility for the aquatic environment. The efficiency of three phosphate precipitants, namely, alum (Al2(SO4)3), lime (Ca(OH)2), and zirconium tetrachloride (ZrCl4) was evaluated in 60 L experimental tanks. Alum yielded the best efficiency, both for the chemical precipitation of P and for algal growth potential reduction determined with the green alga Selenastrum capricornutum. Zirconium tetrachloride was also very active, but for a shorter period of time. Finally, lime was relatively less efficient.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 47 (1989), S. 87-100 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Our contribution to Zr environmental hazard, arrived at by means of bioassays on bacteria, microscopic algae and fish, confirms the hypothesis that Zr has low toxicity. Toxic effects revealed with the Microtox test may be attributed to pH rather than specifically to Zr (5 min. EC50 〉 4.3 mg L−1). Fish assays also confirmed the low toxicity of Zr (96-hr LC50 〉 20 mg L−1; 96 hr minimal stress concentration 〉 20 mg L−1; Mutagenicity (Fluctuation test) and genotoxicity (S.O.S. Chromotest) assays failed to show any DNA-related effects linked to this metal. Only the algal assays (ATP energy stress) demonstrated genuine toxicity at Zr concentrations between 1.3 and 2.5 mg L−1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...